Difference between revisions of "User:Tohline/Appendix/Ramblings/T3Integrals"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Definition: Fix power of q in definition of \ell)
(Start discussing time-derivatives of unit vectors)
Line 262: Line 262:
</table>
</table>


==Vector Derivatives==


<!--
For orthogonal coordinate systems, the time-rate-of-change of the three unit vectors are given by the expressions,
 
 
==Other Potentially Useful Differential Relations==
 
In examining the equation of motion and searching for analytic representations of the <math>3^\mathrm{rd}</math> integral of motion, we will need to know how each of the scale factors varies along each of the coordinate directions.  Since our T2 coordinate system is an orthogonal system of coordinates, in general we can write,
<div align="center">
<math>
\frac{\partial h_k}{\partial\chi_j} = \sum_{i=1}^3 h_j^2 \biggl( \frac{\partial\chi_j}{\partial x_i} \biggr) \frac{\partial h_k}{\partial x_i} ,
</math>
</div>
where <math>x_i</math> are the three Cartesian coordinates.  Analytic expressions for the first partial derivative in each term on the RHS, <math>\partial\chi_j/\partial x_i</math>, can be obtained from the table shown above.  To derive expressions for the second partial derivative in each RHS term, the following differential relations also will be useful:
 
<table align="center" border="1" cellpadding="5">
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial x}
</math>
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial y}
</math>
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial z}
</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>\varpi</math>
  </td>
  <td align="center">
<math>
\frac{x}{\varpi}
</math>
  </td>
  <td align="center">
<math>
\frac{y}{\varpi}
</math>
  </td>
  <td align="center">
<math>
0
</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>\ell</math>
  </td>
  <td align="center">
<math>
- x\ell^3
</math>
  </td>
  <td align="center">
<math>
- y \ell^3
</math>
  </td>
  <td align="center">
<math>
- q^4 z \ell^3
</math>
  </td>
</tr>
</table>
 
Putting all of these expressions together, we derive the following:
 
 
<table align="center" border="1" cellpadding="5">
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial \chi_1}
</math>
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial \chi_2}
</math>
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial \chi_3}
</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>h_1</math>
  </td>
  <td align="center">
<math>
\frac{\ell}{B^2} - h_1^2 \ell^3 (\varpi^2 + q^6 z^2)
</math>
  </td>
  <td align="center">
<math>
(1-q^2)q^2 h_1 h_2^2 \ell^2 \chi_2
</math>
  </td>
  <td align="center">
<math>
0
</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>h_2</math>
  </td>
  <td align="center">
<math>
q^2 h_1^2 h_2 \ell^2 \chi_1
</math>
  </td>
  <td align="center">
<math>
- \frac{q^4 h_2 \ell^4 z^2}{\chi_2} \biggl[ ( \varpi^2 + q^2 z^2 ) + ( \varpi^2 + q^4 z^2 ) \biggr]
</math>
  </td>
  <td align="center">
<math>
0
</math>
  </td>
</tr>
</table>
 
==Time Derivatives==
Assuming no mistakes have been made in our derivation of the above expressions, the time-derivative of the two key scale factors become,
 
<table align="center" border="0" cellpadding="3">
<table align="center" border="0" cellpadding="3">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\frac{dh_1}{dt}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>\frac{\partial h_1}{\partial\chi_1} \dot{\chi}_1 + \frac{\partial h_1}{\partial\chi_2} \dot{\chi}_2</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\biggl[ \frac{\ell}{B^2} - h_1^2 \ell^3 (\varpi^2 + q^6 z^2) \biggr]\dot{\chi}_1  + \biggl[ (1-q^2)q^2 h_1 h_2^2 \ell^2 \chi_2 \biggr]\dot{\chi}_2  ;
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\frac{dh_2}{dt}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>\frac{\partial h_2}{\partial\chi_1} \dot{\chi}_1 + \frac{\partial h_2}{\partial\chi_2} \dot{\chi}_2</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\biggl[ q^2 h_1^2 h_2 \ell^2 \chi_1 \biggr]\dot{\chi}_1  - \frac{q^4 h_2 \ell^4 z^2}{\chi_2} \biggl[ ( \varpi^2 + q^2 z^2 ) + ( \varpi^2 + q^4 z^2 ) \biggr]\dot{\chi}_2 .
</math>
  </td>
</tr>
</table>
If the potential is only a function of the first T2 coordinate, <math>\chi_1</math>, then the <math>2^\mathrm{nd}</math> component of the equation of motion states,
<div align="center">
<math>
\frac{d}{dt}( h_2\dot{\chi}_2 ) + h_1 \dot{\chi}_1 \biggl[ \dot{\chi}_2 \frac{1}{h_1}\frac{\partial h_2}{\partial \chi_1} - \dot{\chi}_2 \frac{1}{h_2}\frac{\partial h_1}{\partial \chi_2} \biggr] = 0 .
</math>
</div>
In other words,
<div align="center">
<math>
\frac{d}{dt}( h_2\dot{\chi}_2 ) = q^2 h_1^2 h_2 \ell^2 \dot{\chi}_1 \chi_2^2\frac{d}{dt}\biggl(\frac{\chi_1}{\chi_2}\biggr) .
</math>
</div>
And the time derivative of a quantity that resembles the traditional angular momentum is,
<div align="center">
<math>
\frac{d}{dt}( h_2^2 \dot{\chi}_2 ) = \frac{q^2 \ell^2 h_2^2}{\chi_2} \biggl\{ (h_1 \chi_2 \dot{\chi}_1)^2 - q^2 \ell^2 z^2 \biggl[(\varpi^2 + q^2 z^2) + (\varpi^2 + q^4 z^2) \biggr]\dot{\chi}_2^2 \biggr\} .
</math>
</div>
=First Special Case (quadratic)=
As has been [[User:Tohline/Appendix/Ramblings/T1Coordinates#First_Special_Case_.28quadratic.29|discussed in an accompanying chapter]], when <math>q^2=2</math> the product of <math>\chi_1</math> and <math>\chi_2</math> shows up as a key quantity when inverting the coordinate definitions.  In particular, by defining,
<div align="center">
<math>\Chi_q \equiv \frac{2\chi_1 \chi_2}{AB} = 2\cosh \Zeta \sinh\Zeta = \sinh(2\Zeta) ,</math>
</div>
and its companion,
<div align="center">
<math>\Upsilon_q \equiv \sqrt{1 + \Chi_q^2} = \cosh^2\Zeta + \sinh^2\Zeta = \cosh(2\Zeta) ,</math>
</div>
we can write,
<table align="center" border="1" cellpadding="5">
<tr>
  <td align="right">
<math>
\varpi^2
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
<math>
\frac{A^2}{2\chi_2^2} \biggl[ \sqrt{1 + \Chi_q^2} - 1 \biggr]
\frac{d}{dt}\hat{e}_1
</math>
</math>
   </td>
   </td>
Line 525: Line 279:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \biggl[\frac{1}{2} (\Upsilon - 1) \biggr]
\hat{e}_2 A + \hat{e}_3 B
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \sinh^2\Zeta
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\biggl( \frac{\chi_1}{B} \biggr)^2 \frac{1}{\cosh^2\Zeta}
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
z^2
\frac{d}{dt}\hat{e}_2
</math>
</math>
   </td>
   </td>
Line 563: Line 296:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{A^2}{4 \chi_2^2}\biggl[ \frac{1}{2} \Chi_q^2 +1 - \sqrt{1 + \Chi_q^2}\biggr]
- \hat{e}_1 A + \hat{e}_3 C
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{1}{2} \biggl( \frac{A}{\chi_2} \biggr)^2 \biggl[\frac{1}{2}(\Upsilon - 1)\biggr]^2
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{1}{2} \biggl( \frac{A}{\chi_2} \biggr)^2 \sinh^4\Zeta
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{1}{2} \biggl( \frac{\chi_1}{B} \biggr)^2 \tanh^2\Zeta
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
\ell^{-2}
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{A^2}{2\chi_2^2} \biggl[ \Chi_q^2 + 1 - \sqrt{ 1 + \Chi_q^2} \biggr]
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \biggl[ \frac{1}{2} (\Upsilon - 1)\biggr] \Upsilon
</math>
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \sinh^2\Zeta ( \cosh^2\Zeta + \sinh^2\Zeta )
\frac{d}{dt}\hat{e}_3
</math>
</math>
   </td>
   </td>
Line 641: Line 313:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl( \frac{\chi_1}{B} \biggr)^2( 1 + \tanh^2\Zeta )
- \hat{e}_1 B - \hat{e}_2 C
</math>
</math>
   </td>
   </td>
</tr>
</tr>  
</table>
</table>


Hence, potentially useful expressions for the scale factors are,
where,
 
<table align="center" border="0" cellpadding="3">
<table border="0" align="center" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
2B^2 h_2^2
A
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\equiv
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
2 \biggl[\frac{B z \varpi \ell}{\chi_2} \biggr]^2
\frac{\dot{\lambda}_2}{h_1} \frac{\partial h_2}{\partial \lambda_1} -
</math>
\frac{\dot{\lambda}_1}{h_2} \frac{\partial h_1}{\partial \lambda_2}
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\biggl( \frac{\chi_1}{\chi_2} \biggr)^2 \biggl[ \frac{\tanh^2\Zeta}{1+\tanh^2\Zeta} \biggr](1-\tanh^2\Zeta) ;
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
2B^2 h_1^2
B
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\equiv
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
2 \biggl[\frac{\chi_1 \ell}{B} \biggr]^2
\frac{\dot{\lambda}_3}{h_1} \frac{\partial h_3}{\partial \lambda_1} -
</math>
\frac{\dot{\lambda}_1}{h_3} \frac{\partial h_1}{\partial \lambda_3}
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\frac{2}{1+\tanh^2\Zeta} .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Notice that, because it is expressible entirely in terms of <math>\Chi_q</math>, the variable <math>\Zeta</math> is a function only of the product of the two key coordinates.  Hence, the scale factor <math>h_1</math> is only a function of the product of the coordinates while <math>h_2</math> depends on the ratio, as well as the product of the two coordinates.  In this context, note that <math>\Zeta</math> can be derived from the product of the two key coordinates via one of the following two relations:
<table border="0" align="center" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
\frac{\chi_1\chi_2}{BA}
C
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\equiv
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\sinh\Zeta ~(1 + \sinh^2\Zeta)^{1/2}
\frac{\dot{\lambda}_3}{h_2} \frac{\partial h_3}{\partial \lambda_2} -
\frac{\dot{\lambda}_2}{h_3} \frac{\partial h_2}{\partial \lambda_3}
</math>
</math>
   </td>
   </td>
</tr>
</tr>  
 
</table>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>
=
</math>
  </td>
  <td align="left">
<math>
\cosh\Zeta ~(\cosh^2\Zeta - 1)^{1/2} .
</math>
  </td>
</tr>


</table>
-->


=See Also=
=See Also=

Revision as of 00:16, 24 May 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Integrals of Motion in T3 Coordinates

Motivated by the HNM82 derivation, in an accompanying chapter we have introduced a new T2 Coordinate System and have outlined a few of its properties. Here we offer a modest redefinition of the second radial coordinate in an effort to bring even more symmetry to the definition of the position vector, <math>\vec{x}</math>.


Definition

By defining the dimensionless angle,

<math> \Zeta \equiv \sinh^{-1}\biggl( \frac{qz}{\varpi} \biggr) , </math>

the two key "T3" coordinates will be written as,

<math> \lambda_1 </math>

<math>\equiv</math>

<math>\varpi \cosh\Zeta = ( \varpi^2 + q^2z^2 )^{1/2}</math>

      and      

<math> \lambda_2 </math>

<math>\equiv</math>

<math>\varpi [\sinh\Zeta ]^{1/(1-q^2)} = \biggl[\frac{\varpi^{q^2}}{qz}\biggr]^{1/(q^2-1)}</math>

Here are some relevant partial derivatives:

 

<math> \frac{\partial}{\partial x} </math>

<math> \frac{\partial}{\partial y} </math>

<math> \frac{\partial}{\partial z} </math>

<math>\lambda_1</math>

<math> \frac{x}{\lambda_1} </math>

<math> \frac{y}{\lambda_1} </math>

<math> \frac{q^2}{\lambda_1} </math>

<math>\lambda_2</math>

<math> \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) x </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi^2} \biggr) </math>

<math> \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) y </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{y}{\varpi^2} \biggr) </math>

<math> - \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\zeta} \biggr]^{q^2/(q^2-1)} \frac{q}{\varpi^{q^2}} </math>
<math> =- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \frac{1}{z} </math>

<math>\lambda_3</math>

<math> - \frac{y}{\varpi^{2}} </math>

<math> + \frac{x}{\varpi^{2}} </math>

<math> 0 </math>

The scale factors are,

<math>h_1^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \lambda_1^2 \ell^2 </math>

 

 

<math>h_2^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> (q^2-1)^2 \biggl(\frac{\varpi z \ell}{\lambda_2} \biggr)^2 </math>

 

 

<math>h_3^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \varpi^2 </math>

 

 

where,        <math>\ell \equiv (\varpi^2 + q^4 z^2)^{-1/2}</math>.


The position vector is,

<math>\vec{x}</math>

<math>=</math>

<math> \hat{i}x + \hat{j}y + \hat{k}z </math>

<math>=</math>

<math> \hat{e}_1 (h_1 \lambda_1) + \hat{e}_2 (h_2 \lambda_2) . </math>

Vector Derivatives

For orthogonal coordinate systems, the time-rate-of-change of the three unit vectors are given by the expressions,

<math> \frac{d}{dt}\hat{e}_1 </math>

<math> = </math>

<math> \hat{e}_2 A + \hat{e}_3 B </math>

<math> \frac{d}{dt}\hat{e}_2 </math>

<math> = </math>

<math> - \hat{e}_1 A + \hat{e}_3 C </math>

<math> \frac{d}{dt}\hat{e}_3 </math>

<math> = </math>

<math> - \hat{e}_1 B - \hat{e}_2 C </math>

where,

<math> A </math>

<math> \equiv </math>

<math> \frac{\dot{\lambda}_2}{h_1} \frac{\partial h_2}{\partial \lambda_1} - \frac{\dot{\lambda}_1}{h_2} \frac{\partial h_1}{\partial \lambda_2} </math>

<math> B </math>

<math> \equiv </math>

<math> \frac{\dot{\lambda}_3}{h_1} \frac{\partial h_3}{\partial \lambda_1} - \frac{\dot{\lambda}_1}{h_3} \frac{\partial h_1}{\partial \lambda_3} </math>

<math> C </math>

<math> \equiv </math>

<math> \frac{\dot{\lambda}_3}{h_2} \frac{\partial h_3}{\partial \lambda_2} - \frac{\dot{\lambda}_2}{h_3} \frac{\partial h_2}{\partial \lambda_3} </math>


See Also

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation