Difference between revisions of "User:Tohline/Appendix/Ramblings/T3Integrals"
(→Definition: Fix power of q in definition of \ell) |
(Start discussing time-derivatives of unit vectors) |
||
Line 262: | Line 262: | ||
</table> | </table> | ||
==Vector Derivatives== | |||
For orthogonal coordinate systems, the time-rate-of-change of the three unit vectors are given by the expressions, | |||
- | |||
- | |||
- | |||
<table align="center" border="0" cellpadding="3"> | <table align="center" border="0" cellpadding="3"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\frac{ | \frac{d}{dt}\hat{e}_1 | ||
</math> | </math> | ||
</td> | </td> | ||
Line 525: | Line 279: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\ | \hat{e}_2 A + \hat{e}_3 B | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\frac{d}{dt}\hat{e}_2 | |||
</math> | </math> | ||
</td> | </td> | ||
Line 563: | Line 296: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
- \hat{e}_1 A + \hat{e}_3 C | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\frac{d}{dt}\hat{e}_3 | |||
</math> | </math> | ||
</td> | </td> | ||
Line 641: | Line 313: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\ | - \hat{e}_1 B - \hat{e}_2 C | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
where, | |||
<table align="center" border="0" cellpadding="3"> | |||
<table | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
A | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
\equiv | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{\dot{\lambda}_2}{h_1} \frac{\partial h_2}{\partial \lambda_1} - | |||
\frac{\dot{\lambda}_1}{h_2} \frac{\partial h_1}{\partial \lambda_2} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
B | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
\equiv | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{\dot{\lambda}_3}{h_1} \frac{\partial h_3}{\partial \lambda_1} - | |||
\frac{\dot{\lambda}_1}{h_3} \frac{\partial h_1}{\partial \lambda_3} | |||
\frac{ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
C | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
\equiv | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\ | \frac{\dot{\lambda}_3}{h_2} \frac{\partial h_3}{\partial \lambda_2} - | ||
\frac{\dot{\lambda}_2}{h_3} \frac{\partial h_2}{\partial \lambda_3} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr | </tr> | ||
</table> | |||
</ | |||
=See Also= | =See Also= |
Revision as of 00:16, 24 May 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Integrals of Motion in T3 Coordinates
Motivated by the HNM82 derivation, in an accompanying chapter we have introduced a new T2 Coordinate System and have outlined a few of its properties. Here we offer a modest redefinition of the second radial coordinate in an effort to bring even more symmetry to the definition of the position vector, <math>\vec{x}</math>.
Definition
By defining the dimensionless angle,
<math> \Zeta \equiv \sinh^{-1}\biggl( \frac{qz}{\varpi} \biggr) , </math>
the two key "T3" coordinates will be written as,
<math> \lambda_1 </math> |
<math>\equiv</math> |
<math>\varpi \cosh\Zeta = ( \varpi^2 + q^2z^2 )^{1/2}</math> |
and |
<math> \lambda_2 </math> |
<math>\equiv</math> |
<math>\varpi [\sinh\Zeta ]^{1/(1-q^2)} = \biggl[\frac{\varpi^{q^2}}{qz}\biggr]^{1/(q^2-1)}</math> |
Here are some relevant partial derivatives:
|
<math> \frac{\partial}{\partial x} </math> |
<math> \frac{\partial}{\partial y} </math> |
<math> \frac{\partial}{\partial z} </math> |
<math>\lambda_1</math> |
<math> \frac{x}{\lambda_1} </math> |
<math> \frac{y}{\lambda_1} </math> |
<math> \frac{q^2}{\lambda_1} </math> |
<math>\lambda_2</math> |
<math>
\frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) x
</math> |
<math>
\frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) y
</math> |
<math>
- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\zeta} \biggr]^{q^2/(q^2-1)} \frac{q}{\varpi^{q^2}}
</math> |
<math>\lambda_3</math> |
<math> - \frac{y}{\varpi^{2}} </math> |
<math> + \frac{x}{\varpi^{2}} </math> |
<math> 0 </math> |
The scale factors are,
<math>h_1^2</math> |
<math>=</math> |
<math> \biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1} </math> |
<math>=</math> |
<math> \lambda_1^2 \ell^2 </math> |
|
|
<math>h_2^2</math> |
<math>=</math> |
<math> \biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1} </math> |
<math>=</math> |
<math> (q^2-1)^2 \biggl(\frac{\varpi z \ell}{\lambda_2} \biggr)^2 </math> |
|
|
<math>h_3^2</math> |
<math>=</math> |
<math> \biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1} </math> |
<math>=</math> |
<math> \varpi^2 </math> |
|
|
where, <math>\ell \equiv (\varpi^2 + q^4 z^2)^{-1/2}</math>. |
The position vector is,
<math>\vec{x}</math> |
<math>=</math> |
<math> \hat{i}x + \hat{j}y + \hat{k}z </math> |
<math>=</math> |
<math> \hat{e}_1 (h_1 \lambda_1) + \hat{e}_2 (h_2 \lambda_2) . </math> |
Vector Derivatives
For orthogonal coordinate systems, the time-rate-of-change of the three unit vectors are given by the expressions,
<math> \frac{d}{dt}\hat{e}_1 </math> |
<math> = </math> |
<math> \hat{e}_2 A + \hat{e}_3 B </math> |
<math> \frac{d}{dt}\hat{e}_2 </math> |
<math> = </math> |
<math> - \hat{e}_1 A + \hat{e}_3 C </math> |
<math> \frac{d}{dt}\hat{e}_3 </math> |
<math> = </math> |
<math> - \hat{e}_1 B - \hat{e}_2 C </math> |
where,
<math> A </math> |
<math> \equiv </math> |
<math> \frac{\dot{\lambda}_2}{h_1} \frac{\partial h_2}{\partial \lambda_1} - \frac{\dot{\lambda}_1}{h_2} \frac{\partial h_1}{\partial \lambda_2} </math> |
<math> B </math> |
<math> \equiv </math> |
<math> \frac{\dot{\lambda}_3}{h_1} \frac{\partial h_3}{\partial \lambda_1} - \frac{\dot{\lambda}_1}{h_3} \frac{\partial h_1}{\partial \lambda_3} </math> |
<math> C </math> |
<math> \equiv </math> |
<math> \frac{\dot{\lambda}_3}{h_2} \frac{\partial h_3}{\partial \lambda_2} - \frac{\dot{\lambda}_2}{h_3} \frac{\partial h_2}{\partial \lambda_3} </math> |
See Also
© 2014 - 2021 by Joel E. Tohline |