Difference between revisions of "User:Tohline/Appendix/Ramblings/T3Integrals"
(Begin definition of T3 coordinates) |
(→Definition: Continue defining T3 coordinates) |
||
Line 12: | Line 12: | ||
</math> | </math> | ||
</div> | </div> | ||
the two key "T3" coordinates | the two key "T3" coordinates will be written as, | ||
<table align="center" border="0" cellpadding="2"> | <table align="center" border="0" cellpadding="2"> | ||
Line 18: | Line 18: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\ | \lambda_1 | ||
</math> | </math> | ||
</td> | </td> | ||
Line 25: | Line 25: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>\varpi \cosh\Zeta = ( \varpi^2 + q^2z^2 )^{1/2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 32: | Line 32: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\ | \lambda_2 | ||
</math> | </math> | ||
</td> | </td> | ||
Line 39: | Line 39: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\ | <math>\varpi [\sinh\Zeta ]^{1/(1-q^2)} = \biggl[\frac{\varpi^{q^2}}{qz}\biggr]^{1/(q^2-1)}</math> | ||
\frac | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Here are | Here are some relevant partial derivatives (<font color="green">there may be a mistake in the derivation of the partials of <math>\lambda_2</math></font>): | ||
<table align="center" border="1" cellpadding="5"> | <table align="center" border="1" cellpadding="5"> | ||
Line 98: | Line 70: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<math>\ | <math>\lambda_1</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
\frac{x}{\lambda_1} | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
\frac{y}{\lambda_1} | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
\frac{q^2}{\lambda_1} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 119: | Line 91: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<math>\ | <math>\lambda_2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
- \biggl( \frac{q^3 | \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) x | ||
</math><br /> | |||
<math> | |||
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi} \biggr) | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
- \biggl( \frac{q^3 | \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) y | ||
</math><br /> | |||
<math> | |||
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{y}{\varpi} \biggr) | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
\frac{ | - \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\zeta} \biggr]^{q^2/(q^2-1)} \frac{q}{\varpi^{q^2}} | ||
</math><br /> | |||
<math> | |||
=- \frac{q}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{q^2/(q^2-1)} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 140: | Line 121: | ||
<tr> | <tr> | ||
<td align="center"> | <td align="center"> | ||
<math>\ | <math>\lambda_3</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
- | - \frac{y}{\varpi^{2}} | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math> | ||
+ | + \frac{x}{\varpi^{2}} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 160: | Line 141: | ||
</table> | </table> | ||
The scale factors are, | The scale factors are (<font color="green">there is a mistake in the derivation of <math>h_2</math></font>), | ||
<table align="center" border="0" cellpadding="5"> | <table align="center" border="0" cellpadding="5"> | ||
Line 172: | Line 153: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\biggl[ \biggl( \frac{\partial\ | \biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 180: | Line 161: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{\ | \frac{\lambda_1^2}{(\varpi^2 + q^4 z^2)} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 188: | Line 169: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\ | \lambda_1^2 \ell^2 | ||
</math> | </math> | ||
</td> | </td> | ||
Line 202: | Line 183: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\biggl[ \biggl( \frac{\partial\ | \biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 210: | Line 191: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{ | \frac{(q^2-1)}{q^2} [\sinh\Zeta]^{2q^2/(q^2-1)} \frac{\varpi^2 }{(\varpi^2 + q^4 z^2)} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 218: | Line 199: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{ | \frac{(q^2-1)}{q^2} \biggl[\frac{\varpi}{\lambda_2} \biggr]^{2q^2} \varpi^2 \ell^2 | ||
</math> | </math> | ||
</td> | </td> | ||
Line 232: | Line 213: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\biggl[ \biggl( \frac{\partial\ | \biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 260: | Line 241: | ||
The position vector is, | The position vector is, | ||
<!-- | |||
<table align="center" border="0" cellpadding="5"> | <table align="center" border="0" cellpadding="5"> | ||
<tr> | <tr> | ||
Line 284: | Line 268: | ||
</table> | </table> | ||
==Other Potentially Useful Differential Relations== | ==Other Potentially Useful Differential Relations== | ||
Revision as of 02:26, 23 May 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Integrals of Motion in T3 Coordinates
Motivated by the HNM82 derivation, in an accompanying chapter we have introduced a new T2 Coordinate System and have outlined a few of its properties. Here we offer a modest redefinition of the second radial coordinate in an effort to bring even more symmetry to the definition of the position vector, <math>\vec{x}</math>.
Definition
By defining the dimensionless angle,
<math> \Zeta \equiv \sinh^{-1}\biggl( \frac{qz}{\varpi} \biggr) , </math>
the two key "T3" coordinates will be written as,
<math> \lambda_1 </math> |
<math>\equiv</math> |
<math>\varpi \cosh\Zeta = ( \varpi^2 + q^2z^2 )^{1/2}</math> |
and |
<math> \lambda_2 </math> |
<math>\equiv</math> |
<math>\varpi [\sinh\Zeta ]^{1/(1-q^2)} = \biggl[\frac{\varpi^{q^2}}{qz}\biggr]^{1/(q^2-1)}</math> |
Here are some relevant partial derivatives (there may be a mistake in the derivation of the partials of <math>\lambda_2</math>):
|
<math> \frac{\partial}{\partial x} </math> |
<math> \frac{\partial}{\partial y} </math> |
<math> \frac{\partial}{\partial z} </math> |
<math>\lambda_1</math> |
<math> \frac{x}{\lambda_1} </math> |
<math> \frac{y}{\lambda_1} </math> |
<math> \frac{q^2}{\lambda_1} </math> |
<math>\lambda_2</math> |
<math>
\frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) x
</math> |
<math>
\frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) y
</math> |
<math>
- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\zeta} \biggr]^{q^2/(q^2-1)} \frac{q}{\varpi^{q^2}}
</math> |
<math>\lambda_3</math> |
<math> - \frac{y}{\varpi^{2}} </math> |
<math> + \frac{x}{\varpi^{2}} </math> |
<math> 0 </math> |
The scale factors are (there is a mistake in the derivation of <math>h_2</math>),
<math>h_1^2</math> |
<math>=</math> |
<math> \biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1} </math> |
<math>=</math> |
<math> \frac{\lambda_1^2}{(\varpi^2 + q^4 z^2)} </math> |
<math>=</math> |
<math> \lambda_1^2 \ell^2 </math> |
<math>h_2^2</math> |
<math>=</math> |
<math> \biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1} </math> |
<math>=</math> |
<math> \frac{(q^2-1)}{q^2} [\sinh\Zeta]^{2q^2/(q^2-1)} \frac{\varpi^2 }{(\varpi^2 + q^4 z^2)} </math> |
<math>=</math> |
<math> \frac{(q^2-1)}{q^2} \biggl[\frac{\varpi}{\lambda_2} \biggr]^{2q^2} \varpi^2 \ell^2 </math> |
<math>h_3^2</math> |
<math>=</math> |
<math> \biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1} </math> |
<math>=</math> |
<math> \varpi^2 </math> |
|
|
where, <math>\ell \equiv (\varpi^2 + q^2 z^2)^{-1/2}</math>. |
The position vector is,
See Also
© 2014 - 2021 by Joel E. Tohline |