Difference between revisions of "User:Tohline/AxisymmetricConfigurations/SolutionStrategies"
(→Axisymmetric Configurations (Structure — Part II): Extend discussion of solution strategies) |
(→Solution Strategies: More on tabulated simple-rotation profiles) |
||
Line 126: | Line 126: | ||
==Solution Strategies== | ==Solution Strategies== | ||
Equilibrium axisymmetric structures — that is, solutions to the above set of simplified governing equations — can be found for | Equilibrium axisymmetric structures — that is, solutions to the above set of simplified governing equations — can be found for specified angular momentum distributions that display a wide range of variations across both of the spatial coordinates, <math>\varpi</math> and <math>z</math>. Experience has shown, however, that the derived structures tend to be dynamically unstable unless the angular velocity is uniform on cylinders, that is, unless the angular velocity is independent of <math>z</math>. With this in mind, we will focus here on a solution strategy that is designed to construct structures with a | ||
<div align="center"> | <div align="center"> | ||
<span id="SimpleRotation"><font color="#770000">'''Simple Rotation Profile'''</font></span> | <span id="SimpleRotation"><font color="#770000">'''Simple Rotation Profile'''</font></span> | ||
<math>\dot\varphi(\varpi,z) = \dot\varphi(\varpi) | <math>\dot\varphi(\varpi,z) = \dot\varphi(\varpi) ,</math> | ||
</div> | </div> | ||
which of course means that we will only be examining axisymmetric structures with specific angular momentum distributions of the form <math>j(\varpi,z) = j(\varpi)</math>. (We will find that even this ''simple rotation'' profile does not guarantee dynamical stability; for example, unstable structures will arise if <math>j</math> is a decreasing function of the radial coordinate, <math>\varpi</math>.) Adopting | which of course means that we will only be examining axisymmetric structures with specific angular momentum distributions of the form <math>j(\varpi,z) = j(\varpi)</math>. (We will find that even this ''simple rotation'' profile does not guarantee dynamical stability; for example, unstable structures will arise if <math>j</math> is a decreasing function of the radial coordinate, <math>\varpi</math>.) | ||
===Simple Rotation and Barotropic EOS=== | |||
Adopting a simple rotation profile along with a barotropic equation of state — in which case <math>dP/\rho</math> can be replaced by <math>dH</math> — we can combine the two components of the Euler equation shown above back into a single vector equation of the form, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
\ | \nabla \biggl[ H + \Phi_\mathrm{eff} \biggr] = 0 , | ||
</math> | </math> | ||
</div> | </div> | ||
where it is understood that, [[User:Tohline/AxisymmetricConfigurations/PGE|as displayed earlier]], here the gradient represents a two-dimensional operator appropriate for axisymmetric configurations, namely, | |||
<div align="center"> | |||
<math> | |||
\nabla f = {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] , | |||
</math> | |||
</div> | |||
and the effective potential, | |||
<div align="center"> | |||
<math> | |||
\Phi_\mathrm{eff} \equiv \Phi + \Psi , | |||
</math> | |||
</div> | |||
has been written in terms of a centrifugal potential, | |||
<div align="center"> | |||
<math> | |||
\Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi ~. | |||
</math> | |||
</div> | |||
<table align="center" border="1" cellpadding="5"> | |||
<tr> | |||
<th align="center" colspan="7"> | |||
<font color="maroon"> | |||
''Simple Rotation Profiles'' <br />Found in the Published Literature | |||
</font> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
| |||
</td> | |||
<th align="center"> | |||
<b><math>\dot\varphi(\varpi)</math></b> | |||
</th> | |||
<th align="center"> | |||
<b><math>v_\varphi(\varpi)</math></b> | |||
</th> | |||
<th align="center"> | |||
<b><math>j(\varpi)</math></b> | |||
</th> | |||
<th align="center"> | |||
<b><math>\frac{j^2}{\varpi^3}</math></b> | |||
</th> | |||
<th align="center"> | |||
<b><math>\Psi(\varpi)</math></b> | |||
</th> | |||
<th align="center"> | |||
Refs. | |||
</th> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<font color="maroon"><b>Power-law</b></font><br />(any <math>q \neq 1</math>) | |||
</td> | |||
<td align="center"> | |||
<math>\frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-2)}</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{j_0}{\varpi_0} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-1)}</math> | |||
</td> | |||
<td align="center"> | |||
<math>j_0\biggl( \frac{\varpi}{\varpi_0} \biggr)^{q}</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(2q-3)}</math> | |||
</td> | |||
<td align="center"> | |||
<math>- \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2(q-1)} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
d | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<font color="maroon"><b>Uniform rotation</b></font><br /><math>(q = 2)</math> | |||
</td> | |||
<td align="center"> | |||
<math>\omega_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>\varpi \omega_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>\varpi^2 \omega_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>\varpi \omega_0^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>- \frac{1}{2} \varpi^2 \omega_0^2</math> | |||
</td> | |||
<td align="center"> | |||
a, f | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<font color="maroon"><b>Uniform</b></font> <math>v_\varphi</math><br /><math>(q = 1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{v_0}{\varpi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>v_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>\varpi v_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{v_0^2}{\varpi}</math> | |||
</td> | |||
<td align="center"> | |||
<math> - v_0^2 \ln\biggl( \frac{\varpi}{\varpi_0} \biggr)</math> | |||
</td> | |||
<td align="center"> | |||
e | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<font color="maroon"><b>Keplerian</b></font><br /><math>(q = 1/2)</math> | |||
</td> | |||
<td align="center"> | |||
<math>\omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-3/2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>\varpi_0 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-1/2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>\varpi_0^2 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{1/2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>\varpi_0 \omega_K^2 \biggl( \frac{\varpi}{\varpi_0} \biggr)^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>+ \frac{\varpi_0^3 \omega_K^2}{\varpi} </math> | |||
</td> | |||
<td align="center"> | |||
d | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<font color="maroon"><b>Uniform specific <br />angular momentum</b></font><br /><math>(q = 0)</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{j_0}{\varpi^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{j_0}{\varpi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>j_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{j_0^2}{\varpi^3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>+ \frac{1}{2} \biggl[ \frac{j_0^2}{\varpi^2} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
c | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<font color="maroon"><b>j-constant <br />rotation</b></font> | |||
</td> | |||
<td align="center"> | |||
<math>\omega_c \biggl[ \frac{A^2}{A^2 + \varpi^2} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>\omega_c \biggl[ \frac{A^2 \varpi}{A^2 + \varpi^2} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>\omega_c \biggl[ \frac{A^2 \varpi^2}{A^2 + \varpi^2} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>\omega_c^2 \biggl[ \frac{A^4 \varpi}{(A^2 + \varpi^2)^2} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>+ \frac{1}{2} \biggl[ \frac{\omega_c^2 A^4}{A^2 + \varpi^2} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
a,b | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="left" colspan="7"> | |||
<sup>a</sup>Hachisu, I. [http://adsabs.harvard.edu/abs/1986ApJS...61..479H 1986, ApJS, 61, 479-507] | |||
(especially §II.c)<br /> | |||
<sup>b</sup>Ou, S. & Tohline, J.E. [http://iopscience.iop.org/0004-637X/651/2/1068/pdf/0004-637X_651_2_1068.pdf 2006, ApJ, 651, 1068-1078] | |||
(especially §2.1)<br /> | |||
<sup>c</sup>Woodward, J.W., Tohline, J.E. & Hachisu, I. [http://adsabs.harvard.edu/abs/1994ApJ...420..247W 1994, ApJ, 420, 247-267]<br /> | |||
<sup>d</sup>Tohline, J.E. & Hachisu, I. [http://adsabs.harvard.edu/abs/1990ApJ...361..394T 1990, ApJ, 361, 394-407]<br /> | |||
<sup>e</sup>Hayashi, C., Narita, S. & Miyama, S.M. [http://adsabs.harvard.edu/abs/1982PThPh..68.1949H 1982, ''Progress of Theoretical Physics'', 68, 1949-1966]<br /> | |||
<sup>f</sup>Maclaurin, C. 1742, ''A Treatise of Fluxions'' | |||
</td> | |||
</tr> | |||
</table> | |||
===Structures | ===Structures=== | ||
When attempting to solve the identified pair of simplified governing differential equations, it will be useful to note that, in a spherically symmetric configuration (where {{User:Tohline/Math/VAR_Density01}} is not a function of <math>\theta</math> or <math>\varphi</math>), the differential mass <math>dm_r</math> that is enclosed within a spherical shell of thickness <math>dr</math> is, | When attempting to solve the identified pair of simplified governing differential equations, it will be useful to note that, in a spherically symmetric configuration (where {{User:Tohline/Math/VAR_Density01}} is not a function of <math>\theta</math> or <math>\varphi</math>), the differential mass <math>dm_r</math> that is enclosed within a spherical shell of thickness <math>dr</math> is, |
Revision as of 22:06, 23 April 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Axisymmetric Configurations (Structure — Part II)
Equilibrium, axisymmetric structures are obtained by searching for time-independent, steady-state solutions to the identified set of simplified governing equations. We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero:
Equation of Continuity
<math>\cancel{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>
The Two Relevant Components of the
Euler Equation
<math> \cancel{\frac{\partial \dot\varpi}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] </math> |
= |
<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} </math> |
<math> \cancel{\frac{\partial \dot{z}}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] </math> |
= |
<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math> |
Adiabatic Form of the
First Law of Thermodynamics
<math>
\biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} +
P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} +
\biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] +
\biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0
</math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>\dot\varpi = \dot{z} = 0</math> but, in general, <math>\dot\varphi</math> is not zero and can be an arbitrary function of <math>\varpi</math> and <math>z</math>, that is, <math>\dot\varphi = \dot\varphi(\varpi,z)</math>. We will seek solutions to the above set of coupled equations for various chosen spatial distributions of the angular velocity <math>\dot\varphi(\varpi,z)</math>, or of the specific angular momentum, <math>j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>.
After setting the radial and vertical velocities to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>4^\mathrm{th}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> & <math>3^\mathrm{rd}</math> (Euler) and <math>5^\mathrm{th}</math> (Poisson) give, respectively,
<math> \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} </math> |
= |
0 |
<math> \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math> |
= |
0 |
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} </math> |
= |
<math>4\pi G \rho</math> |
As has been outlined in our discussion of supplemental relations for time-independent problems, in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between <math>~P</math> and <math>~\rho</math>.
Solution Strategies
Equilibrium axisymmetric structures — that is, solutions to the above set of simplified governing equations — can be found for specified angular momentum distributions that display a wide range of variations across both of the spatial coordinates, <math>\varpi</math> and <math>z</math>. Experience has shown, however, that the derived structures tend to be dynamically unstable unless the angular velocity is uniform on cylinders, that is, unless the angular velocity is independent of <math>z</math>. With this in mind, we will focus here on a solution strategy that is designed to construct structures with a
Simple Rotation Profile
<math>\dot\varphi(\varpi,z) = \dot\varphi(\varpi) ,</math>
which of course means that we will only be examining axisymmetric structures with specific angular momentum distributions of the form <math>j(\varpi,z) = j(\varpi)</math>. (We will find that even this simple rotation profile does not guarantee dynamical stability; for example, unstable structures will arise if <math>j</math> is a decreasing function of the radial coordinate, <math>\varpi</math>.)
Simple Rotation and Barotropic EOS
Adopting a simple rotation profile along with a barotropic equation of state — in which case <math>dP/\rho</math> can be replaced by <math>dH</math> — we can combine the two components of the Euler equation shown above back into a single vector equation of the form,
<math> \nabla \biggl[ H + \Phi_\mathrm{eff} \biggr] = 0 , </math>
where it is understood that, as displayed earlier, here the gradient represents a two-dimensional operator appropriate for axisymmetric configurations, namely,
<math> \nabla f = {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] , </math>
and the effective potential,
<math> \Phi_\mathrm{eff} \equiv \Phi + \Psi , </math>
has been written in terms of a centrifugal potential,
<math> \Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi ~. </math>
Simple Rotation Profiles |
||||||
---|---|---|---|---|---|---|
|
<math>\dot\varphi(\varpi)</math> |
<math>v_\varphi(\varpi)</math> |
<math>j(\varpi)</math> |
<math>\frac{j^2}{\varpi^3}</math> |
<math>\Psi(\varpi)</math> |
Refs. |
Power-law |
<math>\frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-2)}</math> |
<math>\frac{j_0}{\varpi_0} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-1)}</math> |
<math>j_0\biggl( \frac{\varpi}{\varpi_0} \biggr)^{q}</math> |
<math>\frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(2q-3)}</math> |
<math>- \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2(q-1)} \biggr]</math> |
d |
Uniform rotation |
<math>\omega_0</math> |
<math>\varpi \omega_0</math> |
<math>\varpi^2 \omega_0</math> |
<math>\varpi \omega_0^2</math> |
<math>- \frac{1}{2} \varpi^2 \omega_0^2</math> |
a, f |
Uniform <math>v_\varphi</math> |
<math>\frac{v_0}{\varpi}</math> |
<math>v_0</math> |
<math>\varpi v_0</math> |
<math>\frac{v_0^2}{\varpi}</math> |
<math> - v_0^2 \ln\biggl( \frac{\varpi}{\varpi_0} \biggr)</math> |
e |
Keplerian |
<math>\omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-3/2}</math> |
<math>\varpi_0 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-1/2}</math> |
<math>\varpi_0^2 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{1/2}</math> |
<math>\varpi_0 \omega_K^2 \biggl( \frac{\varpi}{\varpi_0} \biggr)^{-2}</math> |
<math>+ \frac{\varpi_0^3 \omega_K^2}{\varpi} </math> |
d |
Uniform specific |
<math>\frac{j_0}{\varpi^2}</math> |
<math>\frac{j_0}{\varpi}</math> |
<math>j_0</math> |
<math>\frac{j_0^2}{\varpi^3}</math> |
<math>+ \frac{1}{2} \biggl[ \frac{j_0^2}{\varpi^2} \biggr]</math> |
c |
j-constant |
<math>\omega_c \biggl[ \frac{A^2}{A^2 + \varpi^2} \biggr]</math> |
<math>\omega_c \biggl[ \frac{A^2 \varpi}{A^2 + \varpi^2} \biggr]</math> |
<math>\omega_c \biggl[ \frac{A^2 \varpi^2}{A^2 + \varpi^2} \biggr]</math> |
<math>\omega_c^2 \biggl[ \frac{A^4 \varpi}{(A^2 + \varpi^2)^2} \biggr]</math> |
<math>+ \frac{1}{2} \biggl[ \frac{\omega_c^2 A^4}{A^2 + \varpi^2} \biggr]</math> |
a,b |
aHachisu, I. 1986, ApJS, 61, 479-507
(especially §II.c) |
Structures
When attempting to solve the identified pair of simplified governing differential equations, it will be useful to note that, in a spherically symmetric configuration (where <math>~\rho</math> is not a function of <math>\theta</math> or <math>\varphi</math>), the differential mass <math>dm_r</math> that is enclosed within a spherical shell of thickness <math>dr</math> is,
<math>dm_r = \rho dr \oint dS = r^2 \rho dr \int_0^\pi \sin\theta d\theta \int_0^{2\pi} d\varphi = 4\pi r^2 \rho dr</math> ,
where we have pulled from the Wikipedia discussion of integration and differentiation in spherical coordinates to define the spherical surface element <math>dS</math>. Integrating from the center of the spherical configuration (<math>r=0</math>) out to some finite radius <math>r</math> that is still inside the configuration gives the mass enclosed within that radius, <math>M_r</math>; specifically,
<math>M_r \equiv \int_0^r dm_r = \int_0^r 4\pi r^2 \rho dr</math> .
We can also state that,
This differential relation is often identified as a statement of mass conservation that replaces the equation of continuity for spherically symmetric, static equilibrium structures.
Technique 3
As in Technique #2, we replace <math>dP/\rho</math> by d<math>~H</math> in the hydrostatic balance relation, but this time we realize that the resulting expression can be written in the form,
<math>\frac{d}{dr}(H+\Phi) = 0</math> .
This means that, throughout our configuration, the functions <math>~H</math>(<math>~\rho</math>) and <math>~\Phi</math>(<math>~\rho</math>) must sum to a constant value, call it <math>C_\mathrm{B}</math>. That is to say, the statement of hydrostatic balance reduces to the algebraic expression,
<math>H + \Phi = C_\mathrm{B}</math> .
This relation must be solved in conjunction with the Poisson equation,
<math>\frac{1}{r^2} \frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) = 4\pi G \rho </math> ,
giving us two equations (one algebraic and the other a <math>2^\mathrm{nd}</math>-order ODE) that relate the three unknown functions, <math>~H</math>, <math>~\rho</math>, and <math>~\Phi</math>
See Also
- Part I of Axisymmetric Configurations: Simplified Governing Equations
© 2014 - 2021 by Joel E. Tohline |