Difference between revisions of "User:Tohline/AxisymmetricConfigurations/SolutionStrategies"
(Begin typing discussion) |
(→Axisymmetric Configurations (Structure — Part II): Finish detailing key set of governing equations) |
||
Line 7: | Line 7: | ||
Equilibrium, axisymmetric '''structures''' are obtained by searching for time-independent, steady-state solutions to the [[User:Tohline/AxisymmetricConfigurations/PGE|identified set of simplified governing equations]]. We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero: | Equilibrium, axisymmetric '''structures''' are obtained by searching for time-independent, steady-state solutions to the [[User:Tohline/AxisymmetricConfigurations/PGE|identified set of simplified governing equations]]. We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero: | ||
<div align="center"> | <div align="center"> | ||
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span | <span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span> | ||
<math>\cancel{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] | <math>\cancel{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] | ||
Line 22: | Line 18: | ||
<span id="PGE:Euler">The Two Relevant Components of the<br /> | <span id="PGE:Euler">The Two Relevant Components of the<br /> | ||
<font color="#770000">'''Euler Equation'''</font> | <font color="#770000">'''Euler Equation'''</font> | ||
</span | </span> | ||
<table border="0" cellpadding="5"> | <table border="0" cellpadding="5"> | ||
<tr> | <tr> | ||
Line 61: | Line 57: | ||
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br /> | <font color="#770000">'''First Law of Thermodynamics'''</font></span><br /> | ||
<math> | <math> | ||
\biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + | \biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + | ||
\biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + | P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} + | ||
\biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} + \biggl[ \dot\varpi \frac{\partial | \biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] + | ||
\biggl[ \dot{z} \frac{\partial | \biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0 | ||
</math> | </math> | ||
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | <span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | ||
Line 74: | Line 71: | ||
</div> | </div> | ||
The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>\dot\varpi = \dot{z} = 0</math> but, in general, <math>\dot\varphi</math> is not zero and can be an arbitrary function of <math>\varpi</math> and <math>z</math>, that is, <math>\dot\varphi = \dot\varphi(\varpi,z)</math>. | |||
After setting the radial and vertical velocities to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>4^\mathrm{th}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> & <math>3^\mathrm{rd}</math> (Euler) and <math>5^\mathrm{th}</math> (Poisson) give, respectively, | |||
<div align="center"> | <div align="center"> | ||
< | <table border="0" cellpadding="5"> | ||
<tr> | |||
<math>\frac{1}{\rho}\frac{ | <td align="right"> | ||
</ | <math> | ||
\biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} | |||
< | </math> | ||
< | </td> | ||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
0 | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
0 | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math>4\pi G \rho</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
We need two supplemental relation to close this set of equations because there are three equations, but five unknown functions — {{User:Tohline/Math/VAR_Pressure01}}<math>(\varpi,z)</math>, {{User:Tohline/Math/VAR_Density01}}<math>(\varpi,z)</math>, {{User:Tohline/Math/VAR_NewtonianPotential01}}<math>(\varpi,z)</math>, and <math>j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>. | |||
As has been outlined in our discussion of [http://www.vistrails.org/index.php/User:Tohline/SR#Time-Independent_Problems supplemental relations for time-independent problems], in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between {{User:Tohline/Math/VAR_Pressure01}} and {{User:Tohline/Math/VAR_Density01}}. (See below.) | |||
==Solution Strategies== | ==Solution Strategies== |
Revision as of 03:35, 23 April 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Axisymmetric Configurations (Structure — Part II)
Equilibrium, axisymmetric structures are obtained by searching for time-independent, steady-state solutions to the identified set of simplified governing equations. We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero:
Equation of Continuity
<math>\cancel{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>
The Two Relevant Components of the
Euler Equation
<math> \cancel{\frac{\partial \dot\varpi}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] </math> |
= |
<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} </math> |
<math> \cancel{\frac{\partial \dot{z}}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] </math> |
= |
<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math> |
Adiabatic Form of the
First Law of Thermodynamics
<math>
\biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} +
P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} +
\biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] +
\biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0
</math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>\dot\varpi = \dot{z} = 0</math> but, in general, <math>\dot\varphi</math> is not zero and can be an arbitrary function of <math>\varpi</math> and <math>z</math>, that is, <math>\dot\varphi = \dot\varphi(\varpi,z)</math>.
After setting the radial and vertical velocities to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>4^\mathrm{th}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> & <math>3^\mathrm{rd}</math> (Euler) and <math>5^\mathrm{th}</math> (Poisson) give, respectively,
<math> \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} </math> |
= |
0 |
<math> \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math> |
= |
0 |
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} </math> |
= |
<math>4\pi G \rho</math> |
We need two supplemental relation to close this set of equations because there are three equations, but five unknown functions — <math>~P</math><math>(\varpi,z)</math>, <math>~\rho</math><math>(\varpi,z)</math>, <math>~\Phi</math><math>(\varpi,z)</math>, and <math>j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>.
As has been outlined in our discussion of supplemental relations for time-independent problems, in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between <math>~P</math> and <math>~\rho</math>. (See below.)
Solution Strategies
When attempting to solve the identified pair of simplified governing differential equations, it will be useful to note that, in a spherically symmetric configuration (where <math>~\rho</math> is not a function of <math>\theta</math> or <math>\varphi</math>), the differential mass <math>dm_r</math> that is enclosed within a spherical shell of thickness <math>dr</math> is,
<math>dm_r = \rho dr \oint dS = r^2 \rho dr \int_0^\pi \sin\theta d\theta \int_0^{2\pi} d\varphi = 4\pi r^2 \rho dr</math> ,
where we have pulled from the Wikipedia discussion of integration and differentiation in spherical coordinates to define the spherical surface element <math>dS</math>. Integrating from the center of the spherical configuration (<math>r=0</math>) out to some finite radius <math>r</math> that is still inside the configuration gives the mass enclosed within that radius, <math>M_r</math>; specifically,
<math>M_r \equiv \int_0^r dm_r = \int_0^r 4\pi r^2 \rho dr</math> .
We can also state that,
This differential relation is often identified as a statement of mass conservation that replaces the equation of continuity for spherically symmetric, static equilibrium structures.
Technique 3
As in Technique #2, we replace <math>dP/\rho</math> by d<math>~H</math> in the hydrostatic balance relation, but this time we realize that the resulting expression can be written in the form,
<math>\frac{d}{dr}(H+\Phi) = 0</math> .
This means that, throughout our configuration, the functions <math>~H</math>(<math>~\rho</math>) and <math>~\Phi</math>(<math>~\rho</math>) must sum to a constant value, call it <math>C_\mathrm{B}</math>. That is to say, the statement of hydrostatic balance reduces to the algebraic expression,
<math>H + \Phi = C_\mathrm{B}</math> .
This relation must be solved in conjunction with the Poisson equation,
<math>\frac{1}{r^2} \frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) = 4\pi G \rho </math> ,
giving us two equations (one algebraic and the other a <math>2^\mathrm{nd}</math>-order ODE) that relate the three unknown functions, <math>~H</math>, <math>~\rho</math>, and <math>~\Phi</math>
See Also
- Part I of Axisymmetric Configurations: Simplified Governing Equations
© 2014 - 2021 by Joel E. Tohline |