Difference between revisions of "User:Tohline/AxisymmetricConfigurations/SolutionStrategies"

From VistrailsWiki
Jump to navigation Jump to search
(Begin typing discussion)
 
(→‎Axisymmetric Configurations (Structure — Part II): Finish detailing key set of governing equations)
Line 7: Line 7:
Equilibrium, axisymmetric '''structures''' are obtained by searching for time-independent, steady-state solutions to the [[User:Tohline/AxisymmetricConfigurations/PGE|identified set of simplified governing equations]].  We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero:
Equilibrium, axisymmetric '''structures''' are obtained by searching for time-independent, steady-state solutions to the [[User:Tohline/AxisymmetricConfigurations/PGE|identified set of simplified governing equations]].  We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero:


<math>
\frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] +
\biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr]
</math>




<div align="center">
<div align="center">
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span>


<math>\cancel{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]  
<math>\cancel{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]  
Line 22: Line 18:
<span id="PGE:Euler">The Two Relevant Components of the<br />
<span id="PGE:Euler">The Two Relevant Components of the<br />
<font color="#770000">'''Euler Equation'''</font>
<font color="#770000">'''Euler Equation'''</font>
</span><br />
</span>
<table border="0" cellpadding="5">
<table border="0" cellpadding="5">
<tr>
<tr>
Line 61: Line 57:
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
<math>
<math>
\biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] +  
\biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} +
\biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} +
P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} +  
\biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] +  
\biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] +  
\biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] \biggr\} = 0
\biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0
</math>
</math>


<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
Line 74: Line 71:
</div>
</div>


To find steady-state solutions, we must first rewrite each time derivative in Eulerian rather than Lagrangian form.  Specifically, for any scalar function, <math>f</math>,
<div align="center">
<math>
\frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f .
</math>
</div>
terms of For a time-independent structure, the <math>4^\mathrm{th}</math> (first law of thermodynamics) equation is trivially satisfied. 


Let's begin by rewriting the identified set of equations in terms of Eulerian rather than Lagrangian time derivatives:
The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>.  That is, <math>\dot\varpi = \dot{z} = 0</math> but, in general, <math>\dot\varphi</math> is not zero and can be an arbitrary function of <math>\varpi</math> and <math>z</math>, that is, <math>\dot\varphi = \dot\varphi(\varpi,z)</math>.




The steady-state flow field that must be adopted to satisfy both a spherically symmetric geometry and the time-independent constraint is, <math>\vec{v} = \hat{e}_r v_r = 0</math>. After setting the radial velocity, <math>v_r</math>, and all time-derivatives to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>3^\mathrm{rd}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> (Euler) and <math>4^\mathrm{th}</math> give, respectively,
After setting the radial and vertical velocities to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>4^\mathrm{th}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> &amp; <math>3^\mathrm{rd}</math> (Euler) and <math>5^\mathrm{th}</math> (Poisson) give, respectively,


<div align="center">
<div align="center">
<span id="HydrostaticBalance"><font color="#770000">'''Hydrostatic Balance'''</font></span><br />
<table border="0" cellpadding="5">
 
<tr>
<math>\frac{1}{\rho}\frac{dP}{dr} =- \frac{d\Phi}{dr} </math> ,<br />
  <td align="right">
</div>
<math>
and,
\biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} 
<div align="center">
</math>
<span id="Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
  </td>
  <td align="center">
=
  </td>
  <td align="left">
0
  </td>
</tr>
<tr>
  <td align="right">
<math>
\biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
0
  </td>
</tr>
<tr>
  <td align="right">
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2}
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>4\pi G \rho</math>
  </td>
</tr>
</table>


<math>\frac{1}{r^2} \frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr)  = 4\pi G \rho </math> .<br />
</div>
</div>




(We recognize the first of these expressions as being the statement of [http://www.vistrails.org/index.php/User:Tohline/PGE/ConservingMomentum#Time-independent_Behavior hydrostatic balance] appropriate for spherically symmetric configurations.
We need two supplemental relation to close this set of equations because there are three equations, but five unknown functions &#8212; {{User:Tohline/Math/VAR_Pressure01}}<math>(\varpi,z)</math>, {{User:Tohline/Math/VAR_Density01}}<math>(\varpi,z)</math>,  {{User:Tohline/Math/VAR_NewtonianPotential01}}<math>(\varpi,z)</math>, and <math>j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>.  


We need one supplemental relation to close this set of equations because there are two equations, but three unknown functions &#8212; {{User:Tohline/Math/VAR_Pressure01}}(r), {{User:Tohline/Math/VAR_Density01}}(r),  and {{User:Tohline/Math/VAR_NewtonianPotential01}}(r). As has been outlined in our discussion of [http://www.vistrails.org/index.php/User:Tohline/SR#Time-Independent_Problems supplemental relations for time-independent problems], in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between {{User:Tohline/Math/VAR_Pressure01}} and {{User:Tohline/Math/VAR_Density01}}.  (See below.)
As has been outlined in our discussion of [http://www.vistrails.org/index.php/User:Tohline/SR#Time-Independent_Problems supplemental relations for time-independent problems], in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between {{User:Tohline/Math/VAR_Pressure01}} and {{User:Tohline/Math/VAR_Density01}}.  (See below.)


==Solution Strategies==
==Solution Strategies==

Revision as of 03:35, 23 April 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Axisymmetric Configurations (Structure — Part II)

LSU Structure still.gif

Equilibrium, axisymmetric structures are obtained by searching for time-independent, steady-state solutions to the identified set of simplified governing equations. We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero:


Equation of Continuity

<math>\cancel{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>


The Two Relevant Components of the
Euler Equation

<math> \cancel{\frac{\partial \dot\varpi}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] </math>

=

<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} </math>

<math> \cancel{\frac{\partial \dot{z}}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] </math>

=

<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>

Adiabatic Form of the
First Law of Thermodynamics

<math> \biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} + \biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] + \biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0 </math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>


The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>\dot\varpi = \dot{z} = 0</math> but, in general, <math>\dot\varphi</math> is not zero and can be an arbitrary function of <math>\varpi</math> and <math>z</math>, that is, <math>\dot\varphi = \dot\varphi(\varpi,z)</math>.


After setting the radial and vertical velocities to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>4^\mathrm{th}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> & <math>3^\mathrm{rd}</math> (Euler) and <math>5^\mathrm{th}</math> (Poisson) give, respectively,

<math> \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} </math>

=

0

<math> \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>

=

0

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} </math>

=

<math>4\pi G \rho</math>


We need two supplemental relation to close this set of equations because there are three equations, but five unknown functions — <math>~P</math><math>(\varpi,z)</math>, <math>~\rho</math><math>(\varpi,z)</math>, <math>~\Phi</math><math>(\varpi,z)</math>, and <math>j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>.

As has been outlined in our discussion of supplemental relations for time-independent problems, in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between <math>~P</math> and <math>~\rho</math>. (See below.)

Solution Strategies

When attempting to solve the identified pair of simplified governing differential equations, it will be useful to note that, in a spherically symmetric configuration (where <math>~\rho</math> is not a function of <math>\theta</math> or <math>\varphi</math>), the differential mass <math>dm_r</math> that is enclosed within a spherical shell of thickness <math>dr</math> is,

<math>dm_r = \rho dr \oint dS = r^2 \rho dr \int_0^\pi \sin\theta d\theta \int_0^{2\pi} d\varphi = 4\pi r^2 \rho dr</math> ,

where we have pulled from the Wikipedia discussion of integration and differentiation in spherical coordinates to define the spherical surface element <math>dS</math>. Integrating from the center of the spherical configuration (<math>r=0</math>) out to some finite radius <math>r</math> that is still inside the configuration gives the mass enclosed within that radius, <math>M_r</math>; specifically,

<math>M_r \equiv \int_0^r dm_r = \int_0^r 4\pi r^2 \rho dr</math> .

We can also state that,

LSU Key.png

<math>~\frac{dM_r}{dr} = 4\pi r^2 \rho</math>

This differential relation is often identified as a statement of mass conservation that replaces the equation of continuity for spherically symmetric, static equilibrium structures.

Technique 3

As in Technique #2, we replace <math>dP/\rho</math> by d<math>~H</math> in the hydrostatic balance relation, but this time we realize that the resulting expression can be written in the form,

<math>\frac{d}{dr}(H+\Phi) = 0</math> .

This means that, throughout our configuration, the functions <math>~H</math>(<math>~\rho</math>) and <math>~\Phi</math>(<math>~\rho</math>) must sum to a constant value, call it <math>C_\mathrm{B}</math>. That is to say, the statement of hydrostatic balance reduces to the algebraic expression,

<math>H + \Phi = C_\mathrm{B}</math> .

This relation must be solved in conjunction with the Poisson equation,

<math>\frac{1}{r^2} \frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) = 4\pi G \rho </math> ,

giving us two equations (one algebraic and the other a <math>2^\mathrm{nd}</math>-order ODE) that relate the three unknown functions, <math>~H</math>, <math>~\rho</math>, and <math>~\Phi</math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation