Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids"
(→Evaluation of Coefficients: Expand on elliptic integral definitions) |
(→Evaluation of Coefficients: Coefficient expressions for oblate spheroids) |
||
Line 87: | Line 87: | ||
===Evaluation of Coefficients=== | ===Evaluation of Coefficients=== | ||
The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be | The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be evaluated in terms of the [http://en.wikipedia.org/wiki/Elliptic_integral#Incomplete_elliptic_integral_of_the_first_kind incomplete elliptic integral of the first kind], | ||
<div align="center"> | <div align="center"> | ||
Line 115: | Line 115: | ||
</div> | </div> | ||
or in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids). | or the integrals can be evaluated in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids). | ||
====Triaxial Configurations==== | ====Triaxial Configurations <math>(a_1 > a_2 > a_3)</math>==== | ||
If the three principal axes of the configuration are unequal in length and related to one another such that <math>a_1 > a_2 > a_3 </math>, | If the three principal axes of the configuration are unequal in length and related to one another such that <math>a_1 > a_2 > a_3 </math>, | ||
Line 190: | Line 190: | ||
<math> | <math> | ||
\frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k)}{\sin\theta} \biggr] ~~. | \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k)}{\sin\theta} \biggr] ~~. | ||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
====Oblate Spheroids <math>(a_1 = a_2 > a_3)</math>==== | |||
If the longest axis (<math>a_1</math>) and the intermediate axis (<math>a_2</math>) of the ellipsoid are equal to one another, then an equatorial cross-section of the object presents a circle of radius <math>a_1</math> and the object is referred to as an '''oblate spheroid'''. For homogeneous oblate spheroids, evaluation of the integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> gives, | |||
<table align="center" border=0 cellpadding="3"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
A_1 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{1}{e^2} \biggl[ \frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr] (1-e^2)^{1/2} ~~; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
A_2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
A_1 ~~; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
A_3 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{2}{e^2} \biggl[ (1-e^2)^{-1/2} - \frac{\sin^{-1}e}{e} \biggr] (1-e^2)^{1/2} ~~; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
I_\mathrm{BT} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
2A_1 + A_3 (1-e^2) = 2 (1-e^2)^{1/2} \biggl[ \frac{\sin^{-1}e}{e} \biggr] ~~. | |||
</math> | </math> | ||
</td> | </td> |
Revision as of 03:28, 21 April 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Properties of Homogeneous Ellipsoids
Gravitational Potential
The Defining Integral Expressions
As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass <math>~\rho</math><math>(\vec{x})</math> can be derived from the gradient of a scalar potential <math>~\Phi</math><math>(\vec{x})</math> defined as follows:
<math> \Phi(\vec{x}) \equiv - \int \frac{G \rho(\vec{x}')}{|\vec{x}' - \vec{x}|} d^3 x' . </math>
As has been explicitly demonstrated in Chapter 3 of Chandrasekhar (1987) and summarized in Table 2-2 (p. 57) of Binney & Tremaine (1987), for an homogeneous ellipsoid this volume integral can be evaluated analytically in closed form. Specifically, at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>(x,y,z) = (a_1,a_2,a_3)</math>,
<math>
\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr],
</math>
where,
<math> A_i </math> |
<math> \equiv </math> |
<math> a_1 a_2 a_3 \int_0^\infty \frac{du}{\Delta (a_i^2 + u )} , </math> |
<math> I_\mathrm{BT} </math> |
<math> \equiv </math> |
<math> \frac{a_2 a_3}{a_1} \int_0^\infty \frac{du}{\Delta} = A_1 + A_2\biggl(\frac{a_2}{a_1}\biggr)^2+ A_3\biggl(\frac{a_3}{a_1}\biggr)^2 , </math> |
<math> \Delta </math> |
<math> \equiv </math> |
<math> \biggl[ (a_1^2 + u)(a_2^2 + u)(a_3^2 + u) \biggr]^{1/2} . </math> |
Evaluation of Coefficients
The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be evaluated in terms of the incomplete elliptic integral of the first kind,
<math> F(\theta,k) \equiv \int_0^\theta \frac{d\theta '}{\sqrt{1 - k^2 \sin^2\theta '}} ~~ , </math>
and/or the incomplete elliptic integral of the second kind,
<math> E(\theta,k) \equiv \int_0^\theta {\sqrt{1 - k^2 \sin^2\theta '}}~d\theta ' ~~ , </math>
where, for our particular problem,
<math>
\theta \equiv \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr) ,
</math>
<math> k \equiv \biggl[\frac{a_1^2 - a_2^2}{a_1^2 - a_3^2} \biggr]^{1/2} , </math>
or the integrals can be evaluated in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).
Triaxial Configurations <math>(a_1 > a_2 > a_3)</math>
If the three principal axes of the configuration are unequal in length and related to one another such that <math>a_1 > a_2 > a_3 </math>,
<math> A_1 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] ~~; </math> |
<math> A_2 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{E(\theta,k) - (1-k^2)F(\theta,k) - (a_3/a_2)k^2\sin\theta}{k^2 (1-k^2) \sin^3\theta}\biggr] ~~; </math> |
<math> A_3 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{(a_2/a_3) \sin\theta - E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] ~~; </math> |
<math> I_\mathrm{BT} </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k)}{\sin\theta} \biggr] ~~. </math> |
Oblate Spheroids <math>(a_1 = a_2 > a_3)</math>
If the longest axis (<math>a_1</math>) and the intermediate axis (<math>a_2</math>) of the ellipsoid are equal to one another, then an equatorial cross-section of the object presents a circle of radius <math>a_1</math> and the object is referred to as an oblate spheroid. For homogeneous oblate spheroids, evaluation of the integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> gives,
<math> A_1 </math> |
<math> = </math> |
<math> \frac{1}{e^2} \biggl[ \frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr] (1-e^2)^{1/2} ~~; </math> |
<math> A_2 </math> |
<math> = </math> |
<math> A_1 ~~; </math> |
<math> A_3 </math> |
<math> = </math> |
<math> \frac{2}{e^2} \biggl[ (1-e^2)^{-1/2} - \frac{\sin^{-1}e}{e} \biggr] (1-e^2)^{1/2} ~~; </math> |
<math> I_\mathrm{BT} </math> |
<math> = </math> |
<math> 2A_1 + A_3 (1-e^2) = 2 (1-e^2)^{1/2} \biggl[ \frac{\sin^{-1}e}{e} \biggr] ~~. </math> |
See Also
© 2014 - 2021 by Joel E. Tohline |