Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids"
(→Gravitational Potential: Evaluation of triaxial coefficients) |
(→Evaluation of Coefficients: Expand on elliptic integral definitions) |
||
Line 87: | Line 87: | ||
===Evaluation of Coefficients=== | ===Evaluation of Coefficients=== | ||
The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of | The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of the [http://en.wikipedia.org/wiki/Elliptic_integral#Incomplete_elliptic_integral_of_the_first_kind incomplete elliptic integral of the first kind], | ||
<div align="center"> | |||
<math> | |||
F(\theta,k) \equiv \int_0^\theta \frac{d\theta '}{\sqrt{1 - k^2 \sin^2\theta '}} ~~ , | |||
</math> | |||
</div> | |||
and/or the [http://en.wikipedia.org/wiki/Elliptic_integral#Incomplete_elliptic_integral_of_the_second_kind incomplete elliptic integral of the second kind], | |||
<div align="center"> | |||
<math> | |||
E(\theta,k) \equiv \int_0^\theta {\sqrt{1 - k^2 \sin^2\theta '}}~d\theta ' ~~ , | |||
</math> | |||
</div> | |||
where, for our particular problem, | |||
<div align="center"> | <div align="center"> | ||
Line 95: | Line 111: | ||
<math> | <math> | ||
k \equiv \biggl[\frac{ | k \equiv \biggl[\frac{a_1^2 - a_2^2}{a_1^2 - a_3^2} \biggr]^{1/2} , | ||
</math> | </math> | ||
</div> | </div> |
Revision as of 02:55, 21 April 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Properties of Homogeneous Ellipsoids
Gravitational Potential
The Defining Integral Expressions
As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass <math>~\rho</math><math>(\vec{x})</math> can be derived from the gradient of a scalar potential <math>~\Phi</math><math>(\vec{x})</math> defined as follows:
<math> \Phi(\vec{x}) \equiv - \int \frac{G \rho(\vec{x}')}{|\vec{x}' - \vec{x}|} d^3 x' . </math>
As has been explicitly demonstrated in Chapter 3 of Chandrasekhar (1987) and summarized in Table 2-2 (p. 57) of Binney & Tremaine (1987), for an homogeneous ellipsoid this volume integral can be evaluated analytically in closed form. Specifically, at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>(x,y,z) = (a_1,a_2,a_3)</math>,
<math>
\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr],
</math>
where,
<math> A_i </math> |
<math> \equiv </math> |
<math> a_1 a_2 a_3 \int_0^\infty \frac{du}{\Delta (a_i^2 + u )} , </math> |
<math> I_\mathrm{BT} </math> |
<math> \equiv </math> |
<math> \frac{a_2 a_3}{a_1} \int_0^\infty \frac{du}{\Delta} = A_1 + A_2\biggl(\frac{a_2}{a_1}\biggr)^2+ A_3\biggl(\frac{a_3}{a_1}\biggr)^2 , </math> |
<math> \Delta </math> |
<math> \equiv </math> |
<math> \biggl[ (a_1^2 + u)(a_2^2 + u)(a_3^2 + u) \biggr]^{1/2} . </math> |
Evaluation of Coefficients
The integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of the incomplete elliptic integral of the first kind,
<math> F(\theta,k) \equiv \int_0^\theta \frac{d\theta '}{\sqrt{1 - k^2 \sin^2\theta '}} ~~ , </math>
and/or the incomplete elliptic integral of the second kind,
<math> E(\theta,k) \equiv \int_0^\theta {\sqrt{1 - k^2 \sin^2\theta '}}~d\theta ' ~~ , </math>
where, for our particular problem,
<math>
\theta \equiv \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr) ,
</math>
<math> k \equiv \biggl[\frac{a_1^2 - a_2^2}{a_1^2 - a_3^2} \biggr]^{1/2} , </math>
or in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).
Triaxial Configurations
If the three principal axes of the configuration are unequal in length and related to one another such that <math>a_1 > a_2 > a_3 </math>,
<math> A_1 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] ~~; </math> |
<math> A_2 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{E(\theta,k) - (1-k^2)F(\theta,k) - (a_3/a_2)k^2\sin\theta}{k^2 (1-k^2) \sin^3\theta}\biggr] ~~; </math> |
<math> A_3 </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{(a_2/a_3) \sin\theta - E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] ~~; </math> |
<math> I_\mathrm{BT} </math> |
<math> = </math> |
<math> \frac{2a_2 a_3}{a_1^2} \biggl[ \frac{F(\theta,k)}{\sin\theta} \biggr] ~~. </math> |
See Also
© 2014 - 2021 by Joel E. Tohline |