Difference between revisions of "User:Tohline/SR"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Equation of State: Rewrite paragraph on EOS)
(Force table of contents)
Line 1: Line 1:
__FORCETOC__
{{LSU_HBook_header}}
{{LSU_HBook_header}}



Revision as of 19:02, 23 January 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Supplemental Relations

Apart from the independent variables <math>~t</math> and <math>~\vec{x}</math>, our principal governing equations involve the vector velocity <math>~\vec{v}</math>, and the four scalar variables, <math>~\Phi</math>, <math>~P</math>, <math>~\rho</math>, and <math>~\epsilon</math>. Because the variables outnumber the equations by one, one (additional) supplemental relationship between the physical variables must be specified in order to close the set of equations.

Also, in order to complete the unique specification of a particular physical problem, either a steady-state flow field or initial conditions must be specified, depending on whether one is studying a time-independent (structure) or time-dependent (stability or dynamics) problem, respectively. Throughout this H_Book, the following strategy will be adopted in order to complete the physical specification of each examined system:

  • For time-independent problems, we will ...
    • adopt a structural relationship between <math>~P</math> and <math>~\rho</math>, and
    • specify a steady-state flow-field.
  • For time-dependent problems, we will ...
    • adopt an equation of state, and
    • specify initial conditions.


Time-Dependent Problems

Equation of State

The equation of state that generally will be adopted for time-dependent problems is one that describes an ideal gas. As the accompanying discussion illustrates, the ideal gas equation of state can assume a variety of different forms. Throughout this H_Book, we frequently will use either "Form A" or "Form B" of the ideal gas equation of state, as displayed in the following Table, to supplement the principal governing equation.

Ideal Gas Equation of State
LSU OtherFormsButton.jpg

Form A Form B

LSU Key.png

<math>~P_\mathrm{gas} = \frac{\Re}{\bar{\mu}} \rho T</math>

<math>~P = (\gamma_\mathrm{g} - 1)\epsilon \rho </math>

"Form A" provides a relationship between the gas temperature T and the state variables <math>~P</math> and <math>~\rho</math>, where <math>~\Re</math> is the gas constant and <math>\mu</math> is the mean molecular weight of the gas. "Form B" relates the state variables <math>~P</math> and <math>~\rho</math> to <math>~\epsilon</math>, where the ratio of specific heats <math>~\gamma_\mathrm{g}</math> is assumed to be independent of both <math>~\vec{x}</math> and <math>~t</math>. [See Tassoul (1978) — specifically the discussion associated with Chapter 4, Eq. 13 — for a more general statement related to the proper specification of the supplemental, equation of state relationship.]

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation