Difference between revisions of "User:Tohline/PGE"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Principal Governing Equations: Add named anchor using <span> tag)
(→‎Principal Governing Equations: Add name tag to all equations)
Line 14: Line 14:




<font color="#770000">'''Equation of Continuity'''</font><br />
<span id="PGE:Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
('''Mass Conservation''')
('''Mass Conservation''')


Line 20: Line 20:




'''Adiabatic Form of the'''<br>
<span id="PGE:FirstLaw">'''Adiabatic Form of the'''<br>
<font color="#770000">'''First Law of Thermodynamics'''</font><br />
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
('''Specific Entropy Conservation''')
('''Specific Entropy Conservation''')


Line 27: Line 27:




<font color="#770000">'''Poisson Equation'''</font><br />
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />


<math>\nabla^2 \Phi = 4\pi G \rho</math>
<math>\nabla^2 \Phi = 4\pi G \rho</math>

Revision as of 18:05, 18 January 2010

H Book title.gif


Principal Governing Equations

According to the eloquent discussion of the broad subject of Fluid Mechanics presented by Landau and Lifshitz (1975), the state of a moving fluid is determined by five quantities: the three components of the velocity <math>\vec{v}</math> and, for example, the pressure <math>P</math> and the density <math> \rho </math> . For our discussions of astrophysical fluid systems throughout this Hypertext Book [H_Book], we will add to this the gravitational potential <math> \Phi </math>. Accordingly, a complete system of equations of fluid dynamics should be six in number. For an ideal fluid these are:

Euler's Equation
(Momentum Conservation)

<math>\frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math>


Equation of Continuity
(Mass Conservation)

<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math>


Adiabatic Form of the
First Law of Thermodynamics

(Specific Entropy Conservation)

<math>\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math>\nabla^2 \Phi = 4\pi G \rho</math>



Home |