Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/ChallengesPt3"

From VistrailsWiki
Jump to navigation Jump to search
Line 298: Line 298:


=See Also=
=See Also=
* [[User:Tohline/ThreeDimensionalConfigurations/Challenges|Construction Challenges (Pt. 1)]]
* [[User:Tohline/ThreeDimensionalConfigurations/RiemannTypeI#Riemann_Type_1_Ellipsoids|Riemann Type 1 Ellipsoids]]
* [[User:Tohline/ThreeDimensionalConfigurations/Challenges#Challenges_Constructing_Ellipsoidal-Like_Configurations|Construction Challenges (Pt. 1)]]
* [[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt2|Construction Challenges (Pt. 2)]]
* [[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt2|Construction Challenges (Pt. 2)]]
* [[User:Tohline/ThreeDimensionalConfigurations/RiemannTypeI#Riemann_Type_1_Ellipsoids|Riemann Type 1 Ellipsoids]]
* [[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt3|Construction Challenges (Pt. 3)]]
* Related discussions of models viewed from a rotating reference frame:
** [[User:Tohline/PGE/RotatingFrame#Rotating_Reference_Frame|PGE]]
** <font color="red"><b>NOTE to Eric Hirschmann &amp; David Neilsen...  </b></font>I have moved the earlier contents of this page to a new Wiki location called [[User:Tohline/Apps/RiemannEllipsoids_Compressible|Compressible Riemann Ellipsoids]].




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 21:55, 25 April 2021

Challenges Constructing Ellipsoidal-Like Configurations (Pt. 2)

This chapter extends the accompanying chapters titled, Construction Challenges (Pt. 1) and (Pt. 2). The focus here is on firming up our understanding of the relationships between various "tilted" Cartesian coordinate frames.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Various Coordinate Frames

Inertial Frame (green with subscript "0")
and Body Frame (black and unsubscripted).

Inertial and Body Frames

The purple (ellipsoidal) configuration is spinning with frequency, <math>~\Omega_0</math> about the <math>~z_0</math>-axis of the "inertial frame," as illustrated; that is,

<math>~\boldsymbol\Omega</math>

<math>~=</math>

<math>~\boldsymbol{\hat{k}_0}\Omega_0 \, .</math>

Also as illustrated, the "body frame," which is attached to and aligned with the principal axes of the purple ellipsoid, is tilted at an angle, <math>~\delta</math>, with respect to the inertial frame. The transformation from one frame to the other is accomplished via the relations provided in the table that follows. For example, as viewed from the body frame, we have,

<math>~\boldsymbol\Omega</math>

<math>~=</math>

<math>~\biggl[ \boldsymbol{\hat\jmath }\sin\delta + \boldsymbol{\hat{k} }\cos\delta \biggr]\Omega_0 \, .</math>


Transformation Between Inertial Frame and Body Frame

<math>~x</math>

<math>~=</math>

<math>~x_0</math>

<math>~y</math>

<math>~=</math>

<math>~y_0\cos\delta + z_0\sin\delta</math>

<math>~z</math>

<math>~=</math>

<math>~z_0\cos\delta - y_0\sin\delta</math>

<math>~x_0</math>

<math>~=</math>

<math>~x</math>

<math>~y_0</math>

<math>~=</math>

<math>~y\cos\delta - z\sin\delta</math>

<math>~z_0</math>

<math>~=</math>

<math>~z\cos\delta + y\sin\delta</math>

<math>~\boldsymbol{\hat\imath}</math>

<math>~=</math>

<math>~\boldsymbol{{\hat\imath}_0}</math>

<math>~\boldsymbol{\hat\jmath}</math>

<math>~=</math>

<math>~\boldsymbol{{\hat\jmath}_0}\cos\delta + \boldsymbol{\hat{k}_0}\sin\delta</math>

<math>~\boldsymbol{\hat{k}}</math>

<math>~=</math>

<math>~\boldsymbol{\hat{k}_0}\cos\delta - \boldsymbol{{\hat\jmath}_0}\sin\delta</math>

<math>~\boldsymbol{{\hat\imath}_0 }</math>

<math>~=</math>

<math>~\boldsymbol{\hat\imath }</math>

<math>~\boldsymbol{{\hat\jmath}_0 }</math>

<math>~=</math>

<math>~\boldsymbol{\hat\jmath }\cos\delta - \boldsymbol{\hat{k} }\sin\delta</math>

<math>~\boldsymbol{{\hat{k}}_0 }</math>

<math>~=</math>

<math>~\boldsymbol{\hat\jmath }\sin\delta + \boldsymbol{\hat{k} }\cos\delta</math>

In the case of our chosen Example Type I Ellipsoid, we have,

Motivation

Where Are We Headed?

In a separate discussion, we have shown that, as viewed from a frame that "tumbles" with the (purple) body of a Type 1 Riemann ellipsoid, each Lagrangian fluid element moves along an elliptical path in a plane that is tipped by an angle <math>~\theta</math> about the x-axis of the body. (See the yellow-dotted orbits in Figure panels 1a and 1b below). As viewed from the (primed) coordinates associated with this tipped plane, by definition, z' = 0 and dz'/dt = 0, and the planar orbit is defined by the expression for an,

Off-Center Ellipse

<math>~1</math>

<math>~=</math>

<math>~\biggl(\frac{x'}{x_\mathrm{max}} \biggr)^2 + \biggl(\frac{y' - y_0}{y_\mathrm{max}} \biggr)^2 \, .</math>

As a function of time, the x'-y' coordinates and associated velocity components of each Lagrangian fluid element are given by the expressions,

<math>~x'</math>

<math>~=</math>

<math>~x_\mathrm{max}\cos(\dot\varphi t)</math>

      and,      

<math>~y' - y_0</math>

<math>~=</math>

<math>~y_\mathrm{max}\sin(\dot\varphi t) \, ,</math>

<math>~\dot{x}'</math>

<math>~=</math>

<math>~- x_\mathrm{max}~ \dot\varphi \cdot \sin(\dot\varphi t) = (y_0 - y') \biggl[ \frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr] \dot\varphi </math>

      and,      

<math>~\dot{y}' </math>

<math>~=</math>

<math>~y_\mathrm{max}~\dot\varphi \cdot \cos(\dot\varphi t) = x' \biggl[ \frac{y_\mathrm{max}}{x_\mathrm{max}}\biggr] \dot\varphi \, .</math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation