Difference between revisions of "User:Tohline/Appendix/Ramblings/ConcentricEllipsodalDaringAttack"
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Daring Attack= {{LSU_HBook_header}} ==Background== Building on our […') |
|||
Line 54: | Line 54: | ||
<td align="center"><math>~-\frac{\sin\lambda_3 \cos\lambda_3}{x}</math></td> | <td align="center"><math>~-\frac{\sin\lambda_3 \cos\lambda_3}{x}</math></td> | ||
<td align="center"><math>~+\frac{\sin\lambda_3 \cos\lambda_3}{q^2y}</math></td> | <td align="center"><math>~+\frac{\sin\lambda_3 \cos\lambda_3}{q^2y}</math></td> | ||
<td align="center"><math>~0</math></td> | |||
<td align="center"><math>~-q^2 y \ell_q</math></td> | |||
<td align="center"><math>~x\ell_q</math></td> | |||
<td align="center"><math>~0</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="9"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\ell_{3D}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~[x^2 + q^4 y^2 + p^2 z^2]^{- 1/ 2 }</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\ell_q</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~[x^2 + q^4 y^2 ]^{- 1/ 2 }</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
</table> | |||
==New Approach== | |||
As before, let's adopt the first-coordinate expression, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\lambda_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
but for the third-coordinate expression we will abandon the trigonometric expression and instead simply use, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\lambda_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{y^{1/q^2}}{x} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="Table1DaringAttack">This modified third-coordinate expression means that the last row of the above table changes; but note that the direction cosine functions remain the same.</span> | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr> | |||
<td align="center" colspan="9">'''Daring Attack'''</td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~n</math></td> | |||
<td align="center"><math>~\lambda_n</math></td> | |||
<td align="center"><math>~h_n</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial x}</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial y}</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial z}</math></td> | |||
<td align="center"><math>~\gamma_{n1}</math></td> | |||
<td align="center"><math>~\gamma_{n2}</math></td> | |||
<td align="center"><math>~\gamma_{n3}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~1</math></td> | |||
<td align="center"><math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math></td> | |||
<td align="center"><math>~\lambda_1 \ell_{3D}</math></td> | |||
<td align="center"><math>~\frac{x}{\lambda_1}</math></td> | |||
<td align="center"><math>~\frac{q^2 y}{\lambda_1}</math></td> | |||
<td align="center"><math>~\frac{p^2 z}{\lambda_1}</math></td> | |||
<td align="center"><math>~(x) \ell_{3D}</math></td> | |||
<td align="center"><math>~(q^2 y)\ell_{3D}</math></td> | |||
<td align="center"><math>~(p^2z) \ell_{3D}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~2</math></td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center"><math>~\ell_q \ell_{3D} (xp^2z)</math></td> | |||
<td align="center"><math>~\ell_q \ell_{3D} (q^2 y p^2z) </math></td> | |||
<td align="center"><math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~3</math></td> | |||
<td align="center"><math>~\frac{y^{1/q^2}}{x} </math></td> | |||
<td align="center"><math>~\frac{xq^2 y \ell_q}{\lambda_3}</math></td> | |||
<td align="center"><math>~-\frac{\lambda_3}{x}</math></td> | |||
<td align="center"><math>~+\frac{\lambda_3}{q^2y}</math></td> | |||
<td align="center"><math>~0</math></td> | <td align="center"><math>~0</math></td> | ||
<td align="center"><math>~-q^2 y \ell_q</math></td> | <td align="center"><math>~-q^2 y \ell_q</math></td> |
Revision as of 20:24, 17 March 2021
Daring Attack
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Background
Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, and on our previous development of the so-called T6 (concentric elliptic) coordinate system, here we take a somewhat daring attack on this problem, mixing our approach to identifying the expression for the third curvilinear coordinate. Broadly speaking, this entire study is motivated by our desire to construct a fully analytically prescribable model of a nonuniform-density ellipsoidal configuration that is an analog to Riemann S-Type ellipsoids.
Direction Cosine Components for T6 Coordinates | ||||||||||||||
<math>~n</math> | <math>~\lambda_n</math> | <math>~h_n</math> | <math>~\frac{\partial \lambda_n}{\partial x}</math> | <math>~\frac{\partial \lambda_n}{\partial y}</math> | <math>~\frac{\partial \lambda_n}{\partial z}</math> | <math>~\gamma_{n1}</math> | <math>~\gamma_{n2}</math> | <math>~\gamma_{n3}</math> | ||||||
<math>~1</math> | <math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math> | <math>~\lambda_1 \ell_{3D}</math> | <math>~\frac{x}{\lambda_1}</math> | <math>~\frac{q^2 y}{\lambda_1}</math> | <math>~\frac{p^2 z}{\lambda_1}</math> | <math>~(x) \ell_{3D}</math> | <math>~(q^2 y)\ell_{3D}</math> | <math>~(p^2z) \ell_{3D}</math> | ||||||
<math>~2</math> | --- | --- | --- | --- | --- | <math>~\ell_q \ell_{3D} (xp^2z)</math> | <math>~\ell_q \ell_{3D} (q^2 y p^2z) </math> | <math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math> | ||||||
<math>~3</math> | <math>~\tan^{-1}\biggl( \frac{y^{1/q^2}}{x} \biggr)</math> | <math>~\frac{xq^2 y \ell_q}{\sin\lambda_3 \cos\lambda_3}</math> | <math>~-\frac{\sin\lambda_3 \cos\lambda_3}{x}</math> | <math>~+\frac{\sin\lambda_3 \cos\lambda_3}{q^2y}</math> | <math>~0</math> | <math>~-q^2 y \ell_q</math> | <math>~x\ell_q</math> | <math>~0</math> | ||||||
|
New Approach
As before, let's adopt the first-coordinate expression,
<math>~\lambda_1</math> |
<math>~\equiv</math> |
<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, ,</math> |
but for the third-coordinate expression we will abandon the trigonometric expression and instead simply use,
<math>~\lambda_3</math> |
<math>~\equiv</math> |
<math>~\frac{y^{1/q^2}}{x} \, .</math> |
This modified third-coordinate expression means that the last row of the above table changes; but note that the direction cosine functions remain the same.
Daring Attack | ||||||||
<math>~n</math> | <math>~\lambda_n</math> | <math>~h_n</math> | <math>~\frac{\partial \lambda_n}{\partial x}</math> | <math>~\frac{\partial \lambda_n}{\partial y}</math> | <math>~\frac{\partial \lambda_n}{\partial z}</math> | <math>~\gamma_{n1}</math> | <math>~\gamma_{n2}</math> | <math>~\gamma_{n3}</math> |
<math>~1</math> | <math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math> | <math>~\lambda_1 \ell_{3D}</math> | <math>~\frac{x}{\lambda_1}</math> | <math>~\frac{q^2 y}{\lambda_1}</math> | <math>~\frac{p^2 z}{\lambda_1}</math> | <math>~(x) \ell_{3D}</math> | <math>~(q^2 y)\ell_{3D}</math> | <math>~(p^2z) \ell_{3D}</math> |
<math>~2</math> | --- | --- | --- | --- | --- | <math>~\ell_q \ell_{3D} (xp^2z)</math> | <math>~\ell_q \ell_{3D} (q^2 y p^2z) </math> | <math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math> |
<math>~3</math> | <math>~\frac{y^{1/q^2}}{x} </math> | <math>~\frac{xq^2 y \ell_q}{\lambda_3}</math> | <math>~-\frac{\lambda_3}{x}</math> | <math>~+\frac{\lambda_3}{q^2y}</math> | <math>~0</math> | <math>~-q^2 y \ell_q</math> | <math>~x\ell_q</math> | <math>~0</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |