Difference between revisions of "User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates"
Line 25: | Line 25: | ||
</tr> | </tr> | ||
</table> | </table> | ||
When <math>~\lambda_1 = a</math>, we obtain the standard definition of an ellipsoidal surface, it being understood that, <math>~q^2 = a^2/b^2</math> and <math>~p^2 = a^2/c^2</math>. (We will assume that <math>~a > b > c</math>, that is, <math>~p^2 > q^2 > 1</math>.) | When <math>~\lambda_1 = a</math>, we obtain the standard definition of an ellipsoidal surface, it being understood that, <math>~q^2 = a^2/b^2</math> and <math>~p^2 = a^2/c^2</math>. (We will assume that <math>~a > b > c</math>, that is, <math>~p^2 > q^2 > 1</math>.) | ||
A vector, <math>~\bold{\hat{n}}</math>, that is normal to the <math>~\lambda_1</math> = constant surface is given by the gradient of the function, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~F(x, y, z)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} - \lambda_1 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
In Cartesian coordinates, this means, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\bold{\hat{n}}(x, y, z)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat\imath \biggl( \frac{\partial F}{\partial x} \biggr) | |||
+ \hat\jmath \biggl( \frac{\partial F}{\partial y} \biggr) | |||
+ \hat{k} \biggl( \frac{\partial F}{\partial z} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat\imath \biggl[ x(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr] | |||
+ \hat\jmath \biggl[ q^2y(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr] | |||
+ \hat\jmath \biggl[ p^2 z(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat\imath \biggl( \frac{x}{\lambda_1} \biggr) | |||
+ \hat\jmath \biggl( \frac{q^2y}{\lambda_1} \biggr) | |||
+ \hat\jmath \biggl(\frac{p^2 z}{\lambda_1} \biggr) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where it is understood that this expression is only to be evaluated at points, <math>~(x, y, z)</math>, that lie on the selected <math>~\lambda_1</math> surface — that is, at points for which the function, <math>~F(x,y,z) = 0</math>. The length of this normal vector is given by the expression, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~[ \bold{\hat{n}} \cdot \bold{\hat{n}} ]^{1 / 2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \biggl( \frac{\partial F}{\partial x} \biggr)^2 + \biggl( \frac{\partial F}{\partial y} \biggr)^2 + \biggl( \frac{\partial F}{\partial z} \biggr)^2 \biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
The properly normalized | |||
Next, we appreciate that the vector that is normal to theWhat is the expression for the unit vector normal to the surface at <math>~(x, y, z)</math> when written in terms of Cartesian unit vectors? | |||
Well, to start with we know that <math>~\lambda_1^2</math> is constant across the entire surface, so at any point on this specified surface we must find, | Well, to start with we know that <math>~\lambda_1^2</math> is constant across the entire surface, so at any point on this specified surface we must find, |
Revision as of 17:09, 27 October 2020
Concentric Ellipsoidal (T6) Coordinates
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Background
Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, and on our previous development of T3 (concentric oblate-spheroidal) and T5 (concentric elliptic) coordinate systems, here we explore the creation of a concentric ellipsoidal (T6) coordinate system. This is motivated by our desire to construct a fully analytically prescribable model of a nonuniform-density ellipsoidal configuration that is an analog to Riemann S-Type ellipsoids.
Orthogonal Coordinates
We start by defining a "radial" coordinate whose values identify various concentric ellipsoidal shells,
<math>~\lambda_1</math> |
<math>~\equiv</math> |
<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, .</math> |
When <math>~\lambda_1 = a</math>, we obtain the standard definition of an ellipsoidal surface, it being understood that, <math>~q^2 = a^2/b^2</math> and <math>~p^2 = a^2/c^2</math>. (We will assume that <math>~a > b > c</math>, that is, <math>~p^2 > q^2 > 1</math>.)
A vector, <math>~\bold{\hat{n}}</math>, that is normal to the <math>~\lambda_1</math> = constant surface is given by the gradient of the function,
<math>~F(x, y, z)</math> |
<math>~\equiv</math> |
<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} - \lambda_1 \, .</math> |
In Cartesian coordinates, this means,
<math>~\bold{\hat{n}}(x, y, z)</math> |
<math>~=</math> |
<math>~ \hat\imath \biggl( \frac{\partial F}{\partial x} \biggr) + \hat\jmath \biggl( \frac{\partial F}{\partial y} \biggr) + \hat{k} \biggl( \frac{\partial F}{\partial z} \biggr) </math> |
|
<math>~=</math> |
<math>~ \hat\imath \biggl[ x(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr] + \hat\jmath \biggl[ q^2y(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr] + \hat\jmath \biggl[ p^2 z(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr] </math> |
|
<math>~=</math> |
<math>~ \hat\imath \biggl( \frac{x}{\lambda_1} \biggr) + \hat\jmath \biggl( \frac{q^2y}{\lambda_1} \biggr) + \hat\jmath \biggl(\frac{p^2 z}{\lambda_1} \biggr) \, , </math> |
where it is understood that this expression is only to be evaluated at points, <math>~(x, y, z)</math>, that lie on the selected <math>~\lambda_1</math> surface — that is, at points for which the function, <math>~F(x,y,z) = 0</math>. The length of this normal vector is given by the expression,
<math>~[ \bold{\hat{n}} \cdot \bold{\hat{n}} ]^{1 / 2}</math> |
<math>~=</math> |
<math>~ \biggl[ \biggl( \frac{\partial F}{\partial x} \biggr)^2 + \biggl( \frac{\partial F}{\partial y} \biggr)^2 + \biggl( \frac{\partial F}{\partial z} \biggr)^2 \biggr]^{1 / 2} </math> |
The properly normalized
Next, we appreciate that the vector that is normal to theWhat is the expression for the unit vector normal to the surface at <math>~(x, y, z)</math> when written in terms of Cartesian unit vectors?
Well, to start with we know that <math>~\lambda_1^2</math> is constant across the entire surface, so at any point on this specified surface we must find,
<math>~0</math> |
<math>~=</math> |
<math>~2x dx + 2q^2y dy + 2p^2z dz \, .</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |