Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/Challenges"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '__FORCETOC__<!-- will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Challenges Constructing Ellipsoidal-Like Configurations= First, let's …')
 
Line 9: Line 9:
==Riemann S-type Ellipsoids==
==Riemann S-type Ellipsoids==


===2<sup>nd</sup>-Order TVE Expressions===


As we have discussed in detail in an [[User:Tohline/VE/RiemannEllipsoids#Riemann_S-Type_Ellipsoids|accompanying chapter]], the three diagonal elements of the <math>~(3 \times 3)</math> 2<sup>nd</sup>-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>.
<table border="1" align="center" cellpadding="5">
<tr>
  <td align="center" colspan="2">Indices</td>
  <td align="center" rowspan="2">2<sup>nd</sup>-Order TVE Expressions that are Relevant to Riemann S-Type Ellipsoids</td>
</tr>
<tr>
  <td align="center" width="5%"><math>~i</math></td>
  <td align="center" width="5%"><math>~j</math></td>
</tr>
<tr>
  <td align="center"><math>~1</math></td>
  <td align="center"><math>~1</math></td>
  <td align="left">
<table align="left" border=0 cellpadding="3">
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{3\cdot 5}{2^2\pi a b c\rho} \biggr] \Pi
+\biggl\{
\Omega_3^2
+ 2  \biggl[ \frac{b^2}{b^2+a^2}\biggr] \Omega_3 \zeta_3
~-~(2\pi G\rho) A_1
\biggr\} a^2
+ \biggl[ \frac{a^2}{a^2 + b^2}\biggr]^2 \zeta_3^2 b^2
</math>
  </td>
</tr>
</table>
  </td>
</tr>
<tr>
  <td align="center"><math>~2</math></td>
  <td align="center"><math>~2</math></td>
  <td align="left">
<table align="left" border=0 cellpadding="3">
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{3\cdot 5}{2^2\pi a b c \rho} \biggr]\Pi
+ \biggl[ \frac{b^2}{b^2+a^2}\biggr]^2 \zeta_3^2 a^2
+ \biggl\{
\Omega_3^2 
+ 2 \biggl[ \frac{a^2}{a^2 + b^2}\biggr] \Omega_3 \zeta_3 
~-~( 2\pi G \rho) A_2
\biggr\}b^2
</math>
  </td>
</tr>
</table>
  </td>
</tr>
<tr>
  <td align="center"><math>~3</math></td>
  <td align="center"><math>~3</math></td>
  <td align="left">
<table align="left" border=0 cellpadding="3">
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{3\cdot 5}{2^2\pi abc\rho} \biggr]\Pi
- (2\pi G \rho)A_3 c^2
</math>
  </td>
</tr>
</table>
  </td>
</tr>
</table>
The <math>~(i, j) = (3, 3)</math> element gives <math>~\Pi</math> directly in terms of known parameters.  The <math>~(1, 1)</math> and <math>~(2, 2)</math> elements can then be combined in a couple of different ways to obtain  a coupled set of expressions that define <math>~\Omega_3</math> and <math>~f \equiv \zeta_3/\Omega_3</math>.
<table border="1" align="center" cellpadding="10" width="80%"><tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\biggl[ \frac{b^2 a^2}{b^2+a^2}\biggr] f \Omega_3^2 
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\pi G\rho \biggl[ \frac{(A_1 - A_2)a^2b^2}{ b^2 - a^2} - A_3 c^2\biggr] \, ;
</math>
  </td>
</tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 7, &sect;48, Eq. (34)</font> ]</td></tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\Omega_3^2 \biggl\{1
+ \biggl[ \frac{a^2b^2}{(a^2 + b^2)^2}\biggr] f^2 \biggr\}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2\pi G\rho}{ (a^2-b^2) }
\biggl[
A_1  a^2
- A_2  b^2
\biggr] \, .
</math>
  </td>
</tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 7, &sect;48, Eq. (33)</font> ]</td></tr>
</table>
</td></tr></table>


==Compressible Structures==
==Compressible Structures==

Revision as of 19:06, 11 September 2020

Challenges Constructing Ellipsoidal-Like Configurations

First, let's review the three different approaches that we have described for constructing Riemann S-type ellipsoids. Then let's see how these relate to the technique that has been used to construct infinitesimally thin, nonaxisymmetric disks.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Riemann S-type Ellipsoids

2nd-Order TVE Expressions

As we have discussed in detail in an accompanying chapter, the three diagonal elements of the <math>~(3 \times 3)</math> 2nd-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>.


Indices 2nd-Order TVE Expressions that are Relevant to Riemann S-Type Ellipsoids
<math>~i</math> <math>~j</math>
<math>~1</math> <math>~1</math>

<math>~0</math>

<math>~=</math>

<math>~ \biggl[ \frac{3\cdot 5}{2^2\pi a b c\rho} \biggr] \Pi +\biggl\{ \Omega_3^2 + 2 \biggl[ \frac{b^2}{b^2+a^2}\biggr] \Omega_3 \zeta_3 ~-~(2\pi G\rho) A_1 \biggr\} a^2 + \biggl[ \frac{a^2}{a^2 + b^2}\biggr]^2 \zeta_3^2 b^2 </math>

<math>~2</math> <math>~2</math>

<math>~0</math>

<math>~=</math>

<math>~ \biggl[ \frac{3\cdot 5}{2^2\pi a b c \rho} \biggr]\Pi + \biggl[ \frac{b^2}{b^2+a^2}\biggr]^2 \zeta_3^2 a^2 + \biggl\{ \Omega_3^2 + 2 \biggl[ \frac{a^2}{a^2 + b^2}\biggr] \Omega_3 \zeta_3 ~-~( 2\pi G \rho) A_2 \biggr\}b^2 </math>

<math>~3</math> <math>~3</math>

<math>~0</math>

<math>~=</math>

<math>~ \biggl[ \frac{3\cdot 5}{2^2\pi abc\rho} \biggr]\Pi - (2\pi G \rho)A_3 c^2 </math>


The <math>~(i, j) = (3, 3)</math> element gives <math>~\Pi</math> directly in terms of known parameters. The <math>~(1, 1)</math> and <math>~(2, 2)</math> elements can then be combined in a couple of different ways to obtain a coupled set of expressions that define <math>~\Omega_3</math> and <math>~f \equiv \zeta_3/\Omega_3</math>.


<math>~\biggl[ \frac{b^2 a^2}{b^2+a^2}\biggr] f \Omega_3^2 </math>

<math>~=</math>

<math>~ \pi G\rho \biggl[ \frac{(A_1 - A_2)a^2b^2}{ b^2 - a^2} - A_3 c^2\biggr] \, ; </math>

[ EFE, Chapter 7, §48, Eq. (34) ]

and,

<math>~ \Omega_3^2 \biggl\{1 + \biggl[ \frac{a^2b^2}{(a^2 + b^2)^2}\biggr] f^2 \biggr\} </math>

<math>~=</math>

<math>~ \frac{2\pi G\rho}{ (a^2-b^2) } \biggl[ A_1 a^2 - A_2 b^2 \biggr] \, . </math>

[ EFE, Chapter 7, §48, Eq. (33) ]

Compressible Structures

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation