Difference between revisions of "User:Tohline/VE/RiemannEllipsoids"
Line 8: | Line 8: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
== | Here we are only interested in determining the equilibrium conditions of uniform-density ellipsoids that have semi-axes, <math>~a_1, a_2, a_3</math>. | ||
==General Coefficient Expressions== | |||
As has been detailed in an [[User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids#Gravitational_Potential|accompanying chapter]], the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions: | |||
<div align="center"> | <div align="center"> | ||
<table border= | <table align="center" border=0 cellpadding="3"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math> | ||
~A_1 | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math> | ||
~= | |||
</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- \ | <math>~2\biggl(\frac{a_2}{a_1}\biggr)\biggl(\frac{a_3}{a_1}\biggr) | ||
\biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, , | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math> | ||
~A_3 | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math> | ||
~= | |||
</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math> | ||
2 \ | ~2\biggl(\frac{a_2}{a_1}\biggr) \biggl[ \frac{(a_2/a_1) \sin\theta - (a_3/a_1)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, , | ||
\, | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math> | ||
~A_2 | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math> | ||
~= | |||
</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~2 - (A_1+A_3) \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
< | </div> | ||
where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\theta = \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
and | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~k = \biggl[\frac{1 - (a_2/a_1)^2}{1 - (a_3/a_1)^2} \biggr]^{1/2} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, § | <tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, §17, Eq. (32)</font> ]</td></tr> | ||
</table> | </table> | ||
</div> | |||
==Adopted (Internal) Velocity Field== | ==Adopted (Internal) Velocity Field== | ||
EFE (p. 130) states that … <font color="#007700"> | EFE (p. 130) states that the … <font color="#007700">kinematical requirement, that the motion <math>~(\vec{u})</math>, associated with <math>~\vec{\zeta}</math>, preserves the ellipsoidal boundary, leads to the following expressions for its components:</font> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 125: | Line 131: | ||
</table> | </table> | ||
==Equilibrium Expressions== | |||
== | [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b> §11(b), p. 22] <font color="#007700">Under conditions of a stationary state, [the tensor virial equation] gives,</font> | ||
<div align="center"> | <div align="center"> | ||
<table | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} </math> | ||
~ | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math>~=</math> | ||
~= | |||
</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~- \delta_{ij}\Pi \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
<font color="#007700">[This] provides six integral relations which must obtain whenever the conditions are stationary</font>. | |||
When viewing the (generally ellipsoidal) configuration from a rotating frame of reference, the 2<sup>nd</sup>-order TVE takes on the more general form: | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~0</math> | ||
~ | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math>~=</math> | ||
~= | |||
</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~ | ||
2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi | |||
+ \Omega^2 I_{ij} - \Omega_i\Omega_k I_{kj} + 2\epsilon_{ilm}\Omega_m \int_V \rho u_lx_j dx | |||
\, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 2, §12, Eq. (64)</font> ]</td></tr> | |||
</table> | |||
EFE (p. 57) also shows that … <font color="#007700">The potential energy tensor … for a homogeneous ellipsoid is given by</font> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~\frac{\mathfrak{W}_{ij}}{\pi G\rho}</math> | ||
~ | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math> | <math>~=</math> | ||
~= | |||
</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-2A_i I_{ij} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, §22, Eq. (128)</font> ]</td></tr> | |||
</table> | </table> | ||
< | <font color="#007700">where</font> | ||
where | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~I_{ij}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\tfrac{1}{5} Ma_i^2 \delta_{ij} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, § | <tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, §22, Eq. (129)</font> ]</td></tr> | ||
</table> | </table> | ||
</ | |||
<font color="#007700">is the moment of inertia tensor.</font> | |||
=Various Degrees of Simplification= | =Various Degrees of Simplification= |
Revision as of 16:20, 4 August 2020
Steady-State 2nd-Order Tensor Virial Equations
By satisfying all six — not necessarily unique — components of the Second-Order Tensor Virial Equation, the entire set of Riemann Ellipsoids can be determined.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Here we are only interested in determining the equilibrium conditions of uniform-density ellipsoids that have semi-axes, <math>~a_1, a_2, a_3</math>.
General Coefficient Expressions
As has been detailed in an accompanying chapter, the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions:
<math> ~A_1 </math> |
<math> ~= </math> |
<math>~2\biggl(\frac{a_2}{a_1}\biggr)\biggl(\frac{a_3}{a_1}\biggr) \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, , </math> |
<math> ~A_3 </math> |
<math> ~= </math> |
<math> ~2\biggl(\frac{a_2}{a_1}\biggr) \biggl[ \frac{(a_2/a_1) \sin\theta - (a_3/a_1)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, , </math> |
<math> ~A_2 </math> |
<math> ~= </math> |
<math>~2 - (A_1+A_3) \, ,</math> |
where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments,
<math>~\theta = \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr)</math> |
and |
<math>~k = \biggl[\frac{1 - (a_2/a_1)^2}{1 - (a_3/a_1)^2} \biggr]^{1/2} \, .</math> |
[ EFE, Chapter 3, §17, Eq. (32) ] |
Adopted (Internal) Velocity Field
EFE (p. 130) states that the … kinematical requirement, that the motion <math>~(\vec{u})</math>, associated with <math>~\vec{\zeta}</math>, preserves the ellipsoidal boundary, leads to the following expressions for its components:
<math>~u_1</math> |
<math>~=</math> |
<math>~- \biggl[ \frac{a_1^2}{a_1^2 + a_2^2}\biggr] \zeta_3 x_2 + \biggl[ \frac{a_1^2}{a_1^2+a_3^2}\biggr] \zeta_2 x_3 \, ,</math> |
<math>~u_2</math> |
<math>~=</math> |
<math>~- \biggl[ \frac{a_2^2}{a_2^2 + a_3^2}\biggr] \zeta_1 x_3 + \biggl[ \frac{a_2^2}{a_2^2+a_1^2}\biggr] \zeta_3 x_1 \, ,</math> |
<math>~u_3</math> |
<math>~=</math> |
<math>~- \biggl[ \frac{a_3^2}{a_3^2 + a_1^2}\biggr] \zeta_2 x_1 + \biggl[ \frac{a_3^2}{a_3^2+a_2^2}\biggr] \zeta_1 x_2 \, .</math> |
[ EFE, Chapter 7, §47, Eq. (1) ] |
Equilibrium Expressions
[EFE §11(b), p. 22] Under conditions of a stationary state, [the tensor virial equation] gives,
<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} </math> |
<math>~=</math> |
<math>~- \delta_{ij}\Pi \, .</math> |
[This] provides six integral relations which must obtain whenever the conditions are stationary.
When viewing the (generally ellipsoidal) configuration from a rotating frame of reference, the 2nd-order TVE takes on the more general form:
<math>~0</math> |
<math>~=</math> |
<math>~ 2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi + \Omega^2 I_{ij} - \Omega_i\Omega_k I_{kj} + 2\epsilon_{ilm}\Omega_m \int_V \rho u_lx_j dx \, . </math> |
[ EFE, Chapter 2, §12, Eq. (64) ] |
EFE (p. 57) also shows that … The potential energy tensor … for a homogeneous ellipsoid is given by
<math>~\frac{\mathfrak{W}_{ij}}{\pi G\rho}</math> |
<math>~=</math> |
<math>~-2A_i I_{ij} \, ,</math> |
[ EFE, Chapter 3, §22, Eq. (128) ] |
where
<math>~I_{ij}</math> |
<math>~=</math> |
<math>~\tfrac{1}{5} Ma_i^2 \delta_{ij} \, ,</math> |
[ EFE, Chapter 3, §22, Eq. (129) ] |
is the moment of inertia tensor.
Various Degrees of Simplification
Riemann S-Type Ellipsoids
Describe …
Jacobi and Dedekind Ellipsoids
Describe …
Maclaurin Spheroids
Describe …
See Also
© 2014 - 2021 by Joel E. Tohline |