Difference between revisions of "User:Tohline/Appendix/CGH/KAH2001"
Line 3: | Line 3: | ||
<!-- __NOTOC__ will force TOC off --> | <!-- __NOTOC__ will force TOC off --> | ||
=Hologram Reconstruction Using a Digital Micromirror Device= | =Hologram Reconstruction Using a Digital Micromirror Device= | ||
Line 103: | Line 101: | ||
==Optical Field in the Image Plane== | ==Optical Field in the Image Plane== | ||
In a paper titled, ''Hologram reconstruction using a digital micromirror device'', [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract T. Kreis, P. Aswendt, & R. Höfling (2001)] — Optical Engineering, vol. 40, no. 6, 926 - 933, hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at [[User:Tohline/Appendix/CGH/ZebraImaging#UT_Southwestern_Medical_Center_at_Dallas|UT's Southwestern Medical Center at Dallas]] that Richard Muffoletto and I visited circa 2004. | |||
This same integral expression — with a slightly different leading normalization factor — appears as equation (5) of [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001]. Referring to it as the ''Fresnel transform'' expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the [aperture]," they write, | This same integral expression — with a slightly different leading normalization factor — appears as equation (5) of [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001]. Referring to it as the ''Fresnel transform'' expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the [aperture]," they write, | ||
Line 335: | Line 335: | ||
</table> | </table> | ||
</td></tr></table> | |||
==SWMED== | |||
In a paper titled, ''Dynamic holographic 3-D image projection'', [https://ui.adsabs.harvard.edu/abs/2003OExpr..11..437H/abstract M. L. Huebschman, B. Munjuluri & H. R. Garner (2003)] — Optics Express, vol. 11, no. 5, 437 - 445, hereafter, SWMED03 — describe the experimental 3-D projection system that was developed at [[User:Tohline/Appendix/CGH/ZebraImaging#UT_Southwestern_Medical_Center_at_Dallas|UT's Southwestern Medical Center at Dallas]]. This is the research group that Richard Muffoletto and I visited circa 2004. | |||
=See Also= | =See Also= |
Revision as of 19:58, 28 March 2020
Hologram Reconstruction Using a Digital Micromirror Device
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Fresnel Diffraction
According to the Wikipedia description of Fresnel diffraction, "… the electric field diffraction pattern at a point <math>~(x, y, z)</math> is given by …" the expression,
<math>~E(x, y, z)</math> |
<math>~=</math> |
<math>~ \frac{1}{i \lambda} \iint_{-\infty}^\infty E(x', y', 0) \biggl[ \frac{e^{i k r}}{r}\biggr] \cos\theta~ dx' dy'\, , </math> |
where, <math>~E(x', y', 0)</math> is the electric field at the aperture, <math>~k \equiv 2\pi/\lambda</math> is the wavenumber, and,
<math>~r</math> |
<math>~\equiv</math> |
<math>~ \biggl[ z^2 + (x - x')^2 + ( y - y')^2 \biggr]^{1 / 2} = z \biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{z^2} \biggr]^{1 / 2} = z\biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{2z^2} - \frac{[(x - x')^2 + ( y - y')^2]^2}{8z^4} + \cdots\biggr] \, . </math> |
(The infinite series in this last expression results from enlisting the binomial theorem.) For simplicity, in the discussion that follows we will assume — as in §2 of KAH2001 — that the aperture is illuminated by a monochromatic plane wave that is impinging normally onto the aperture, in which case, the angle, <math>~\theta = 0</math>.
In the Fresnel approximation, the assumption is made that, in the series expansion for <math>~r</math>, all terms beyond the first two are very small in magnitude relative to the second term. Adopting this approximation — and setting <math>~\theta = 0</math> — then leads to the expression,
<math>~E(x, y, z)</math> |
<math>~\approx</math> |
<math>~ \frac{1}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~\biggl[ 1 - \frac{(x - x')^2 + ( y - y')^2}{2z^2} \biggr] \exp\biggl\{ i k z\biggl[ 1 + \frac{(x - x')^2 + ( y - y')^2}{2z^2}\biggr] \biggr\}~ dx' dy' </math> |
|
<math>~=</math> |
<math>~ \frac{e^{i k z}}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~\biggl[ 1 - \frac{(x - x')^2 + ( y - y')^2}{2z^2} \biggr] \exp\biggl\{\frac{ i k}{2 z}\biggl[ (x - x')^2 + ( y - y')^2 \biggr] \biggr\}~ dx' dy' \, . </math> |
If "… for the <math>~r</math> in the denominator we go one step further, and approximate it with only the first term …", then our expression results in the Fresnel diffraction integral,
<math>~E(x, y, z)</math> |
<math>~\approx</math> |
<math>~ \frac{e^{i k z}}{i z \lambda} \iint_{-\infty}^\infty E(x', y', 0) ~ \exp\biggl\{\frac{ i k}{2 z}\biggl[ (x - x')^2 + ( y - y')^2 \biggr] \biggr\}~ dx' dy' \, . </math> |
Optical Field in the Image Plane
In a paper titled, Hologram reconstruction using a digital micromirror device, T. Kreis, P. Aswendt, & R. Höfling (2001) — Optical Engineering, vol. 40, no. 6, 926 - 933, hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical Center at Dallas that Richard Muffoletto and I visited circa 2004.
This same integral expression — with a slightly different leading normalization factor — appears as equation (5) of KAH2001. Referring to it as the Fresnel transform expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the [aperture]," they write,
<math>~B(x,y)</math> |
<math>~=</math> |
<math>~ \frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, , </math> |
with,
<math>~I_\xi(x)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, , </math> |
<math>~I_\eta(y)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} W(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, , </math> |
and where "… the optical field immediately in front of the [aperture]" is assumed to be of the form, <math>~U(\xi,\eta) = V(\xi)\cdot W(\eta)</math>. Following KAH2001 — especially the discussion associated with their equations (7) - (10) — if we make the substitutions,
<math>~\mu \equiv \frac{x}{d\lambda} \, ,</math> |
and, |
<math>~\alpha \equiv \frac{\sqrt{2} \xi}{ \sqrt{d \lambda} } - \sqrt{2d\lambda} ~\mu </math> <math>~\Rightarrow ~~~ d\xi = \biggl(\frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha \, ,</math> |
the expression for <math>~I_\xi(x)</math> may be written as,
<math>~I_\xi(x)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ d \lambda \mu - \frac{\sqrt{d\lambda}}{\sqrt{2}} \biggl( \alpha + \sqrt{2 d\lambda}~\mu \biggr) \biggr]^2 \biggr\} \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha </math> |
|
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl\{ i \pi d \lambda \biggl[ \mu - \frac{1}{\sqrt{2d \lambda}} \biggl( \alpha + \sqrt{2 d\lambda}~\mu \biggr) \biggr]^2 \biggr\} \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} d\alpha </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{d \lambda}{2}\biggr)^{1 / 2} \int_{-\infty}^{\infty} V(\xi) \times \exp\biggl[ \frac{i \pi \alpha^2}{2} \biggr] d\alpha \, . </math> |
The expression for <math>~I_\eta(y)</math> may be rewritten similarly.
As a point of comparison, in our accompanying discussion of 1D parallel apertures (specifically, the subsection titled, Case 1), we have presented the following expression for the y-coordinate variation of the optical field immediately in front of the aperture:
where,
In other words, making the substitution, <math>~(2\pi/\lambda) \rightarrow k</math>, and recognizing that, <math>~d \leftrightarrow Z</math>, our expression becomes,
|
SWMED
In a paper titled, Dynamic holographic 3-D image projection, M. L. Huebschman, B. Munjuluri & H. R. Garner (2003) — Optics Express, vol. 11, no. 5, 437 - 445, hereafter, SWMED03 — describe the experimental 3-D projection system that was developed at UT's Southwestern Medical Center at Dallas. This is the research group that Richard Muffoletto and I visited circa 2004.
See Also
- Updated Table of Contents
- Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]
© 2014 - 2021 by Joel E. Tohline |