Difference between revisions of "User:Tohline/Appendix/CGH/ParallelAperturesConsolidate"
Line 25: | Line 25: | ||
</table> | </table> | ||
and, assuming that <math>~|Y_j/L| \ll 1</math> for all <math>~j</math>, deduce that, | and, assuming that <math>~|Y_j/L| \ll 1</math> for all <math>~j</math>, deduce that, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 43: | Line 42: | ||
</tr> | </tr> | ||
</table> | </table> | ||
where, | where, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 62: | Line 60: | ||
</table> | </table> | ||
Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. | Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form, | ||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ e^{i 2\pi L/\lambda } \sum_j a_j e^{i \phi_j} \cdot e^{-i \Theta_j } | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Theta_j</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
In a related accompanying derivation titled, [[User:Tohline/Appendix/CGH/ParallelApertures#Analytic_Result|''Analytic Result'']], we made the substitution, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~a_j e^{i \phi_j} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~\rightarrow</math> | |||
</td> | |||
<td align="left"> | |||
<math>~a_0(Y) dY \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and changed the summation to an integration, obtaining, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ e^{i 2\pi L/\lambda } \int a_0(Y) e^{-i \Theta } dY | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
=See Also= | =See Also= |
Revision as of 17:14, 17 March 2020
CGH: Consolidate Expressions Regarding Parallel Apertures
One-dimensional Apertures
From our accompanying discussion of the Utility of FFT Techniques, we start with the most general expression for the amplitude at one point on an image screen, namely,
<math>~A(y_1)</math> |
<math>~=</math> |
<math>~\sum_j a_j e^{i(2\pi D_j/\lambda + \phi_j)} \, , </math> |
and, assuming that <math>~|Y_j/L| \ll 1</math> for all <math>~j</math>, deduce that,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~\sum_j a_j e^{i[ 2\pi L/\lambda + \phi_j]}\biggl[ \cos\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) - i \sin\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \biggr] \, , </math> |
where,
<math>~L</math> |
<math>~\equiv</math> |
<math>~ Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \, . </math> |
Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ e^{i 2\pi L/\lambda } \sum_j a_j e^{i \phi_j} \cdot e^{-i \Theta_j } \, , </math> |
where,
<math>~\Theta_j</math> |
<math>~\equiv</math> |
<math>~\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \, .</math> |
In a related accompanying derivation titled, Analytic Result, we made the substitution,
<math>~a_j e^{i \phi_j} </math> |
<math>~\rightarrow</math> |
<math>~a_0(Y) dY \, ,</math> |
and changed the summation to an integration, obtaining,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ e^{i 2\pi L/\lambda } \int a_0(Y) e^{-i \Theta } dY \, , </math> |
See Also
- Updated Table of Contents
- Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]
- Diffraction (Wikipedia)
- Various Google hits:
- Single Slit Diffraction (University of Tennessee, Knoxville)
- Diffraction from a Single Slit; Young's Experiment with Finite Slits (University of New South Wales, Sydney, Australia)
- Single Slit Diffraction Pattern of Light (University of British Columbia, Canada)
- Fraunhofer Single Slit (Georgia State University)
© 2014 - 2021 by Joel E. Tohline |