Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/RiemannStype"
Line 82: | Line 82: | ||
</table> | </table> | ||
</div> | </div> | ||
==Equilibrium Conditions for Riemann S-type Ellipsoids== | |||
Pulling from Chapter 7 — specifically, §48 — of [[User:Tohline/Appendix/References#EFE|Chandrasekhar's EFE]], we understand that the semi-axis ratios, <math>~(\tfrac{b}{a}, \tfrac{c}{a})</math> associated with Riemann S-type ellipsoids are given by the roots of the equation, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\biggl[ \frac{a^2 b^2}{a^2 + b^2} \biggr] f \biggl( \frac{\Omega^2}{\pi G \rho} \biggr) | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~a^2 b^2 A_{12} - c^2 A_3 \, ,</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">§48, Eq. (34)</font> ]</td></tr> | |||
</table> | |||
</div> | |||
and the associated value of the square of the equilibrium configuration's angular velocity is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl[ 1 + \biggl( \frac{a^2 b^2}{a^2 + b^2} \biggr) f^2 \biggr] \frac{\Omega^2}{\pi G \rho}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2B_{12} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">§39, Eq. (5)</font> ]</td></tr> | |||
</table> | |||
</div> | |||
where, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A_{12}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\frac{A_1-A_2}{(a^2 - b^2)} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">§21, Eq. (107)</font> ]</td></tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~B_{12}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~A_2 - a^2A_{12} \, .</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">§21, Eq. (105)</font> ]</td></tr> | |||
</table> | |||
</div> | |||
(Notice that if we set <math>~f \rightarrow 0</math>, this pair of expressions simplifies to the pair we have provided in a separate discussion of the [[User:Tohline/ThreeDimensionalConfigurations/JacobiEllipsoids#Equilibrium_Conditions_for_Jacobi_Ellipsoids|equilibrium conditions for Jacobi ellipsoids]].) | |||
=See Also= | =See Also= |
Revision as of 03:24, 19 August 2019
Riemann S-type Ellipsoids
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
General Coefficient Expressions
As has been detailed in an accompanying chapter, the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3) ~\leftrightarrow~(a,b,c)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions:
<math> ~A_1 </math> |
<math> ~= </math> |
<math>~2\biggl(\frac{b}{a}\biggr)\biggl(\frac{c}{a}\biggr) \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, , </math> |
<math> ~A_3 </math> |
<math> ~= </math> |
<math> ~2\biggl(\frac{b}{a}\biggr) \biggl[ \frac{(b/a) \sin\theta - (c/a)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, , </math> |
<math> ~A_2 </math> |
<math> ~= </math> |
<math>~2 - (A_1+A_3) \, ,</math> |
where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments,
<math>~\theta = \cos^{-1} \biggl(\frac{c}{a} \biggr)</math> |
and |
<math>~k = \biggl[\frac{1 - (b/a)^2}{1 - (c/a)^2} \biggr]^{1/2} \, .</math> |
[ EFE, Chapter 3, §17, Eq. (32) ] |
Equilibrium Conditions for Riemann S-type Ellipsoids
Pulling from Chapter 7 — specifically, §48 — of Chandrasekhar's EFE, we understand that the semi-axis ratios, <math>~(\tfrac{b}{a}, \tfrac{c}{a})</math> associated with Riemann S-type ellipsoids are given by the roots of the equation,
<math>~ \biggl[ \frac{a^2 b^2}{a^2 + b^2} \biggr] f \biggl( \frac{\Omega^2}{\pi G \rho} \biggr) </math> |
<math>~=</math> |
<math>~a^2 b^2 A_{12} - c^2 A_3 \, ,</math> |
[ EFE, §48, Eq. (34) ] |
and the associated value of the square of the equilibrium configuration's angular velocity is,
<math>~\biggl[ 1 + \biggl( \frac{a^2 b^2}{a^2 + b^2} \biggr) f^2 \biggr] \frac{\Omega^2}{\pi G \rho}</math> |
<math>~=</math> |
<math>~2B_{12} \, ,</math> |
[ EFE, §39, Eq. (5) ] |
where,
<math>~A_{12}</math> |
<math>~\equiv</math> |
<math>~-\frac{A_1-A_2}{(a^2 - b^2)} \, ,</math> |
[ EFE, §21, Eq. (107) ] | ||
<math>~B_{12}</math> |
<math>~\equiv</math> |
<math>~A_2 - a^2A_{12} \, .</math> |
[ EFE, §21, Eq. (105) ] |
(Notice that if we set <math>~f \rightarrow 0</math>, this pair of expressions simplifies to the pair we have provided in a separate discussion of the equilibrium conditions for Jacobi ellipsoids.)
See Also
© 2014 - 2021 by Joel E. Tohline |