Difference between revisions of "User:Tohline/Apps/RotatingPolytropes/BarmodeLinearTimeDependent"
Line 16: | Line 16: | ||
CODE: Newtonian, 3D Eulerian, Cartesian, with entropy tracer; reflection symmetry through equatorial plane; <math>~\Gamma=2</math>; Poisson solved with preconditioned conjugate gradient (PCG) method<br /> | CODE: Newtonian, 3D Eulerian, Cartesian, with entropy tracer; reflection symmetry through equatorial plane; <math>~\Gamma=2</math>; Poisson solved with preconditioned conjugate gradient (PCG) method<br /> | ||
MODEL(s): axisymmetric, n = 1 polytrope; [[User:Tohline/AxisymmetricConfigurations/SolutionStrategies#SRPtable|j-constant rotation law]] with A = 1; their Table I lists four different equilibrium configurations. | MODEL(s): axisymmetric, n = 1 polytrope; [[User:Tohline/AxisymmetricConfigurations/SolutionStrategies#SRPtable|j-constant rotation law]] with A = 1; their Table I lists four different equilibrium configurations having T/|W| = 0.256, 0.268, 0.277, 0.281. | ||
</td></tr></table> | </td></tr></table> | ||
Revision as of 23:39, 1 July 2019
Simulating the Onset of a Barmode Instability
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Index of Relevant Publications
Here is a list of relevant research papers as enumerated by …
- Y. Kojima & M. Saijo (2008), Phys. Rev. D, vol. 78, Issue 12, id. 124001: Amplification of azimuthal modes with odd wave numbers during dynamical bar-mode growth in rotating stars
Nonlinear growth of the bar-mode deformation is studied for a differentially rotating star with supercritical rotational energy. In particular, the growth mechanism of some azimuthal modes with odd wave numbers is examined … Mode coupling to even modes, i.e., the bar mode and higher harmonics, significantly enhances the amplitudes of odd modes …
CODE: Newtonian, 3D Eulerian, Cartesian, with entropy tracer; reflection symmetry through equatorial plane; <math>~\Gamma=2</math>; Poisson solved with preconditioned conjugate gradient (PCG) method MODEL(s): axisymmetric, n = 1 polytrope; j-constant rotation law with A = 1; their Table I lists four different equilibrium configurations having T/|W| = 0.256, 0.268, 0.277, 0.281. |
- J. E. Tohline, R. H. Durisen & M. McCollough (1985), ApJ, 298, 220: The linear and nonlinear dynamic stability of rotating N = 3/2 polytropes
- R. H. Durisen, R. A. Gingold, J. E. Tohline & A. P. Boss (1986), ApJ, 305, 281: Dynamic Fission Instabilities in Rapidly Rotating N = 3/2 Polytropes: A Comparison of Results from Finite-Difference and Smoothed Particle Hydrodynamics Codes
- H. A. Williams & J. E. Tohline (1987), ApJ, 315, 594: Linear and Nonlinear Dynamic Instability of Rotating Polytropes
- H. A. Williams & J. E. Tohline (1988), ApJ, 334, 449: Circumstellar Ring Formation in Rapidly Rotating Protostars
- J. L. Houser, J. M. Centrella & S. C. Smith (1994), PRL, 72, 1314: Gravitational radiation from nonaxisymmetric instability in a rotating star
- S. C. Smith, J. L. Houser & J. M. Centrella (1995), ApJ, 458, 236: Simulations of Nonaxisymmetric Instability in a Rotating Star: A Comparison between Eulerian and Smooth Particle Hydrodynamics
- J. L. Houser & J. M. Centrella (1996), Phys. Rev. D, 54, 7278: Gravitational radiation from rotational instabilites in compact stellar cores with stiff equations of state
- J. Toman, J. N. Imamura, B. J. Pickett & R. H. Durisen (1998), ApJ, 497, 370: Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. I. The Kelvin Modes
- K. C. B. New, J. M. Centrella & J. E. Tohline (2000), Phys. Rev. D, 62, 064019: Gravitational waves from long-duration simulations of the dynamical bar instability
- M. Shibata, T. W. Baumgarte & S. L. Shapiro (2000), ApJ, 542, 453: The Bar-Mode Instability in Differentially Rotating Neutron Stars: Simulations in Full General Relativity
- Y.-T. Liu & L. Lindblom (2001), MNRAS, 324, 1063: Models of rapidly rotating neutron stars: remnants of accretion-induced collapse
- M. Saijo, M. Shibata, T. W. Baumgarte & S. L. Shapiro (2001), ApJ, 548, 919: Dynamical Bar Instability in Rotating Stars: Effect of General Relativity
- J. M. Centrella, K. C. B. New, L. L. Lowe & J. D. Brown (2001), ApJ, 550, L193: Dynamical Rotational Instability at Low T/W
- Y.-T. Liu (2002), Phys. Rev. D, 65, 124003: Dynamical instability of new-born neutron stars as sources of gravitational radiation
- M. Saijo, T. W. Baumgarte & S. L. Shapiro (2003), ApJ, 595, 352: One-armed Spiral Instability in Differentially Rotating Stars
- S. Ou & J. E. Tohline (2006), ApJ, 651, 1068: Unexpected Dynamical Instabilities in Differentially Rotating Neutron Stars
- L. Baiotti, R. De Pietri, G. M. Manco & L. Rezzolla (2007), Phys. Rev. D, 75, 044023: Accurate simulations of the dynamical bar-mode instability in full general relativity
- P. Cerda-Duran, V. Quilos & J. A. Font (2007), Comp. Phys. Comm., 177, 288: AMR simulations of the low T/|W| bar-mode instability of neutron stars
- S. Ou, J. E. Tohline & P. M. Motl (2007), ApJ, 665, 1074: Further Evidence for an Elliptical Instability in Rotating Fluid Bars and Ellipsoidal Stars
- M. Saijo & Y. Kojima (2008), Phys. Rev. D, 77, 063002: Faraday resonance in dynamical bar instability of differentially rotating stars
Additional references identified through the above set of references:
- M. Saijo (2018), Phys. Rev. D, 98, 024003: Determining the stiffness of the equation of state using low T/W dynamical instabilities in differentially rotating stars
We investigate the nature of low T/W dynamical instabilities in various ranges of the stiffness of the equation of state in differentially rotating stars … We analyze these instabilities in both a linear perturbation analysis and a three-dimensional hydrodynamical simulation … the nature of the eigenfunction that oscillates between corotation and the surface for an unstable star requires reinterpretation of pulsation modes in differentially rotating stars. |
See Also
© 2014 - 2021 by Joel E. Tohline |