Difference between revisions of "User:Tohline/SSC/Structure/Polytropes/VirialSummary"

From VistrailsWiki
Jump to navigation Jump to search
Line 7: Line 7:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


==Setup==
==Groundwork==
===Basic Relations===
In the context of spherically symmetric, pressure-truncated polytropic configurations, the relevant free-energy expression is,
In the context of spherically symmetric, pressure-truncated polytropic configurations, the relevant free-energy expression is,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 140: Line 141:
</table>
</table>


==First Recognition==
===Useful Recognition===


By comparing various terms in the first two algebraic ''Setup'' expressions, above, It is clear that,
By comparing various terms in the first two algebraic ''Setup'' expressions, above, It is clear that,

Revision as of 19:45, 8 February 2019

Virial Equilibrium of Pressure-Truncated Polytropes

Here we will draw heavily from an accompanying Free Energy Synopsis.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Groundwork

Basic Relations

In the context of spherically symmetric, pressure-truncated polytropic configurations, the relevant free-energy expression is,

<math>~\mathfrak{G}</math>

<math>~=</math>

<math>~W_\mathrm{grav} + U_\mathrm{int} + P_e V \, .</math>

When rewritten in a suitably dimensionless form — see two useful alternatives, below — this expression becomes,

<math>~\mathfrak{G}^*</math>

<math>~=</math>

<math>~- a x^{-1} + bx^{-3/n} + c x^3 \, ,</math>

where <math>~x</math> is the configuration's dimensionless radius and <math>~a</math>, <math>~b</math>, and <math>~c</math> are constants. We therefore have,

<math>~\frac{d\mathfrak{G}^*}{dx}</math>

<math>~=</math>

<math>~\frac{1}{x^2} \biggl[ a - \biggl( \frac{3b}{n} \biggr) x^{(n-3)/n} + 3c x^4 \biggr] \, ,</math>

and,

<math>~\frac{d^2\mathfrak{G}^*}{dx^2}</math>

<math>~=</math>

<math>~\frac{1}{x^3} \biggl[\biggl(\frac{n+3}{n}\biggr) \biggl( \frac{3b}{n} \biggr) x^{(n-3)/n} + 6c x^4 - 2a \biggr] \, .</math>

Virial equilibrium is obtained when <math>~d\mathfrak{G}^*/dx = 0</math>, that is, when

<math>~\biggl( \frac{3b}{n} \biggr) x_\mathrm{eq}^{(n-3)/n} </math>

<math>~=</math>

<math>~ a + 3c x_\mathrm{eq}^4 \, .</math>

And along an equilibrium sequence, the specific equilibrium state that marks a transition from dynamically stable to dynamically unstable configurations — henceforth labeled as having the critical radius, <math>~x_\mathrm{crit}</math> — is identified by setting <math>~d^2\mathfrak{G}^*/dx^2 = 0</math>, that is, it is the configuration for which,

<math>~0</math>

<math>~=</math>

<math>~\biggl[\biggl(\frac{n+3}{n}\biggr) \biggl( \frac{3b}{n} \biggr) x^{(n-3)/n} + 6c x^4 - 2a \biggr]_{x = x_\mathrm{eq}}</math>

<math>~\Rightarrow ~~~ x_\mathrm{crit}^4 </math>

<math>~=</math>

<math>~ \frac{a}{3^2c}\biggl(\frac{n - 3}{n+1}\biggr) \, . </math>

Inserting the adiabatic exponent in place of the polytropic index via the relation, <math>~n = (\gamma - 1)^{-1}</math>, we have equivalently,

<math>~ x_\mathrm{crit}^4 </math>

<math>~=</math>

<math>~ \frac{a}{3^2c}\biggl(\frac{4-3\gamma}{\gamma}\biggr) \, . </math>

Useful Recognition

By comparing various terms in the first two algebraic Setup expressions, above, It is clear that,

<math>~W^*_\mathrm{grav} = -ax^{-1}</math>

      and,      

<math>~U^*_\mathrm{int} = bx^{-3/n} \, .</math>

Notice, then, that in every equilibrium configuration, we should find,

<math>~- \frac{U^*_\mathrm{int}}{W^*_\mathrm{grav}}\biggr|_\mathrm{eq}</math>

<math>~=</math>

<math>~ \biggl(\frac{b}{a}\biggr) x_\mathrm{eq}^{(n-3)/n} = \frac{n}{3a} \biggl[ a + 3cx^4_\mathrm{eq} \biggr] </math>

 

<math>~=</math>

<math>~ \frac{n}{3} \biggl[ 1 + \biggl(\frac{3c}{a}\biggr) x^4_\mathrm{eq} \biggr] \, . </math>

And, specifically in the critical configuration we should find that,

<math>~- \frac{U^*_\mathrm{int}}{W^*_\mathrm{grav}}\biggr|_\mathrm{crit}</math>

<math>~=</math>

<math>~ \frac{1}{3(\gamma-1)} \biggl[ 1 + \frac{1}{3}\biggl(\frac{4-3\gamma}{\gamma}\biggr) \biggr] = \frac{4}{3^2\gamma(\gamma-1)} </math>

<math>~\Rightarrow ~~~\frac{S^*_\mathrm{therm}}{W^*_\mathrm{grav}}\biggr|_\mathrm{crit}</math>

<math>~=</math>

<math>~ -\frac{2}{3\gamma} \, . </math>

The equivalent of this last expression also appears at the end of subsection of an accompanying Tabular Overview.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation