Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
Line 531: | Line 531: | ||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis: Applicable to Bipolytropic Configurations</b></font> | ! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis: Applicable to Bipolytropic Configurations</b></font> | ||
|- | |- | ||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">&# | ! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">⑧</font></b> <b>Variational Principle</b> | ||
! style="text-align:center; background-color:lightblue;" |<b><font color="maroon" size="+1">&# | ! style="text-align:center; background-color:lightblue;" |<b><font color="maroon" size="+1">⑩</font></b> <b>Free-Energy Analysis of Stability</b> | ||
|- | |- | ||
! style="vertical-align:top; text-align:left;" | | ! style="vertical-align:top; text-align:left;" | | ||
<div align="center"> | <div align="center"> | ||
<font color="#770000">''' | <font color="#770000">'''Governing Variational Relation'''</font><br /> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\biggl( \frac{2\pi}{3}\biggr)\sigma_c^2 \int_0^{R^*} (x r^*)^2 dM_r^* </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 550: | Line 549: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{d}{ | \gamma_c (\gamma_c-1) \int_0^{r^*_\mathrm{core}} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} | ||
+\ | - (3\gamma_c - 4) \int_0^{r^*_\mathrm{core}} x^2 dW^*_\mathrm{grav} | ||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ ~\gamma_e (\gamma_e-1) \int_{r^*_\mathrm{core}}^{R^*} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} | |||
- (3\gamma_e - 4) \int_{r^*_\mathrm{core}}^{R^*} x^2 dW^*_\mathrm{grav} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ ~3^2(\gamma_c - \gamma_e) x_i^2 P_i^* V_\mathrm{core}^* \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
! style="vertical-align:top; text-align:left;" rowspan="5"| | ! style="vertical-align:top; text-align:left;" rowspan="5"| | ||
As we have detailed in an [[User:Tohline/SSC/BipolytropeGeneralization#Free_Energy_and_Its_Derivatives|accompanying discussion]], the first derivative of the relevant free-energy expression is, | As we have detailed in an [[User:Tohline/SSC/BipolytropeGeneralization#Free_Energy_and_Its_Derivatives|accompanying discussion]], the first derivative of the relevant free-energy expression is, | ||
Line 728: | Line 752: | ||
</table> | </table> | ||
Note the similarity with <b><font color="maroon" size="+1">&# | Note the similarity with <b><font color="maroon" size="+1">⑨</font></b> — temporarily, see [[User:Tohline/SSC/Stability/BiPolytropes#Revised_Free-Energy_Analysis|this discussion]]. | ||
|- | |- | ||
Line 735: | Line 759: | ||
|- | |- | ||
! style="vertical-align:top; text-align:left;" | | ! style="vertical-align:top; text-align:left;" | | ||
<div align="center"> | <div align="center"> | ||
<font color="#770000">'''Governing Variational Relation</font><br /> | <font color="#770000">'''Governing Variational Relation</font><br /> | ||
Line 742: | Line 765: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\biggl( \frac{2\pi}{3}\biggr)\sigma_c^2 \int_0^{R^*} (x r^*)^2 dM_r^* </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 749: | Line 772: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\int_0^ | \gamma_c (\gamma_c-1) \int_0^{r^*_\mathrm{core}} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} | ||
- | - (3\gamma_c - 4) \int_0^{r^*_\mathrm{core}} x^2 dW^*_\mathrm{grav} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 764: | Line 787: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | + ~\gamma_e (\gamma_e-1) \int_{r^*_\mathrm{core}}^{R^*} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} | ||
- \ | - (3\gamma_e - 4) \int_{r^*_\mathrm{core}}^{R^*} x^2 dW^*_\mathrm{grav} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 775: | Line 798: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ ~3^2(\gamma_c - \gamma_e) x_i^2 P_i^* V_\mathrm{core}^* \, . | |||
</math> | </math> | ||
</td> | </td> |
Revision as of 20:33, 4 February 2019
Spherically Symmetric Configurations Synopsis (Using Style Sheet)
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Structure
Tabular Overview
| ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | ||||||||||||||||
① Detailed Force Balance | ③ Free-Energy Identification of Equilibria | |||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| |||||||||||||||
② Virial Equilibrium | ||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
|
Pointers to Relevant Chapters
⓪ Background Material:
· | Principal Governing Equations (PGEs) in most general form being considered throughout this H_Book |
---|---|
· | PGEs in a form that is relevant to a study of the Structure, Stability, & Dynamics of spherically symmetric systems |
· | Supplemental relations — see, especially, barotropic equations of state |
① Detailed Force Balance:
· | Derivation of the equation of Hydrostatic Balance, and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as Technique 1 |
---|
② Virial Equilibrium:
· | Formal derivation of the multi-dimensional, 2nd-order tensor virial equations |
---|---|
· | Scalar Virial Theorem, as appropriate for spherically symmetric configurations |
· | Generalization of scalar virial theorem to include the bounding effects of a hot, tenuous external medium |
Stability
Isolated & Pressure-Truncated Configurations
Stability Analysis: Applicable to Isolated & Pressure-Truncated Configurations | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
④ Perturbation Theory | ⑦ Free-Energy Analysis of Stability | |||||||||||||||||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
Note the similarity with ⑥.
the conditions for virial equilibrium and stability, may be written respectively as,
| |||||||||||||||||||||||||||||||||
⑤ Variational Principle | ||||||||||||||||||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| ||||||||||||||||||||||||||||||||||
⑥ Approximation: Homologous Expansion/Contraction | ||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
Bipolytropes
Stability Analysis: Applicable to Bipolytropic Configurations | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
⑧ Variational Principle | ⑩ Free-Energy Analysis of Stability | |||||||||||||||||||||||||||||||||||||||
Governing Variational Relation
|
As we have detailed in an accompanying discussion, the first derivative of the relevant free-energy expression is,
where,
and the second derivative of that free-energy function is,
Hence, in bipolytropes, the marginally unstable equilibrium configuration (second derivative of free-energy set to zero) will be identified by the model that exhibits the ratio,
See the accompanying discussion. If — based for example on ⑦ — we make the reasonable assumption that, in equilibrium, the statements,
hold separately, then we satisfy the virial equilibrium condition, namely,
and the second derivative of the relevant free-energy function can be rewritten as,
Note the similarity with ⑨ — temporarily, see this discussion. | |||||||||||||||||||||||||||||||||||||||
⑤ Variational Principle | ||||||||||||||||||||||||||||||||||||||||
Governing Variational Relation
| ||||||||||||||||||||||||||||||||||||||||
⑥ Approximation: Homologous Expansion/Contraction | ||||||||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |