Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
Line 613: | Line 613: | ||
---- | ---- | ||
This stability criterion may be rewritten as, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\biggl[ R^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2} \biggr]_\mathrm{equil}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | |||
<math>~ | <math>~ | ||
2[(3\gamma_c -4) S_\mathrm{core} | |||
+ (3\gamma_e -4) S_\mathrm{env} ] \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Hence, in bipolytropes, the marginally unstable equilibrium configuration (second derivative of free-energy set to zero) will be identified by the model that exhibits the ratio, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\frac{S_\mathrm{core}}{S_\mathrm{env}}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 638: | Line 642: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{(3\gamma_e - 4)}{(4 - 3\gamma_c)} \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
See the [[User:Tohline/SSC/Stability/BiPolytropes#What_to_Expect_for_Equilibrium_Configurations|accompanying discussion]]. | |||
---- | |||
If we make the reasonable assumption that, in equilibrium, the statements, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~2S_\mathrm{core} = 3P_i V_\mathrm{core} - W_\mathrm{core}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
and | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~2S_\mathrm{env} = - 3P_i V_\mathrm{core} - W_\mathrm{env} \, ,</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
hold separately, then we satisfy the virial equilibrium condition, namely, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~0</math> | |||
<math>~ | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 679: | Line 678: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~2S_\mathrm{tot} + W_\mathrm{tot} \, ,</math> | ||
+ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
and the second derivative of the relevant free-energy function can be rewritten as, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
Line 704: | Line 693: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2(W_\mathrm{core} + W_\mathrm{env}) | |||
+ ( | + (3\gamma_c - 2) (3P_i V_\mathrm{core} - W_\mathrm{core}) | ||
</math> | </math> | ||
</td> | </td> | ||
Line 718: | Line 707: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ ( | + (3\gamma_e-2)(-3P_i V_\mathrm{core} - W_\mathrm{env}) | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Line 732: | Line 720: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2 | 3^2 P_i V_\mathrm{core}(\gamma_c - \gamma_e) | ||
+ (3\gamma_e | + (4-3\gamma_c ) W_\mathrm{core} | ||
+ (4-3\gamma_e)W_\mathrm{env} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Note the similarity with <b><font color="maroon" size="+1">⑧</font></b> — temporarily, see [[User:Tohline/SSC/Stability/BiPolytropes#Revised_Free-Energy_Analysis|this discussion]]. | |||
|- | |- |
Revision as of 05:15, 4 February 2019
Spherically Symmetric Configurations Synopsis (Using Style Sheet)
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Structure
Tabular Overview
| ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | ||||||||||||||||
① Detailed Force Balance | ③ Free-Energy Identification of Equilibria | |||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| |||||||||||||||
② Virial Equilibrium | ||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
|
Pointers to Relevant Chapters
⓪ Background Material:
· | Principal Governing Equations (PGEs) in most general form being considered throughout this H_Book |
---|---|
· | PGEs in a form that is relevant to a study of the Structure, Stability, & Dynamics of spherically symmetric systems |
· | Supplemental relations — see, especially, barotropic equations of state |
① Detailed Force Balance:
· | Derivation of the equation of Hydrostatic Balance, and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as Technique 1 |
---|
② Virial Equilibrium:
· | Formal derivation of the multi-dimensional, 2nd-order tensor virial equations |
---|---|
· | Scalar Virial Theorem, as appropriate for spherically symmetric configurations |
· | Generalization of scalar virial theorem to include the bounding effects of a hot, tenuous external medium |
Stability
Isolated & Pressure-Truncated Configurations
Stability Analysis: Applicable to Isolated & Pressure-Truncated Configurations | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
④ Perturbation Theory | ⑦ Free-Energy Analysis of Stability | |||||||||||||||||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
Note the similarity with ⑥.
the conditions for virial equilibrium and stability, may be written respectively as,
| |||||||||||||||||||||||||||||||||
⑤ Variational Principle | ||||||||||||||||||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| ||||||||||||||||||||||||||||||||||
⑥ Approximation: Homologous Expansion/Contraction | ||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
Bipolytropes
Stability Analysis: Applicable to Bipolytropic Configurations | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
④ Perturbation Theory | ⑨ Free-Energy Analysis of Stability | ||||||||||||||||||||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
As we have detailed in an accompanying discussion, the first derivative of the relevant free-energy expression is,
where,
and the second derivative of that free-energy function is,
Hence, in bipolytropes, the marginally unstable equilibrium configuration (second derivative of free-energy set to zero) will be identified by the model that exhibits the ratio,
See the accompanying discussion. If we make the reasonable assumption that, in equilibrium, the statements,
hold separately, then we satisfy the virial equilibrium condition, namely,
and the second derivative of the relevant free-energy function can be rewritten as,
Note the similarity with ⑧ — temporarily, see this discussion. | ||||||||||||||||||||||||||||||||||||
⑤ Variational Principle | |||||||||||||||||||||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| |||||||||||||||||||||||||||||||||||||
⑥ Approximation: Homologous Expansion/Contraction | |||||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |