Difference between revisions of "User:Tohline/Appendix/Ramblings/RadiationHydro"
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Radiation-Hydrodynamics= {{LSU_HBook_header}} ==Principal Governing…') |
|||
Line 22: | Line 22: | ||
</div> | </div> | ||
and | and — ignoring magnetic fields — a modified version of the, | ||
<div align="center"> | |||
<span id="ConservingMomentum:Lagrangian"><font color="#770000">'''Lagrangian Representation'''</font></span><br /> | |||
of the Euler Equation, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 38: | Line 42: | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
plus the following pair of additional ''energy-conservation-based'' dynamical equations: | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
Line 67: | Line 75: | ||
</tr> | </tr> | ||
</table> | </table> | ||
=Related Discussions= | =Related Discussions= |
Revision as of 03:55, 21 October 2018
Radiation-Hydrodynamics
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Principal Governing Equations
First, referencing §2 of J. C. Hayes et al. (2006, ApJS, 165, 188 - 228) — see also, D. C. Marcello & J. E. Tohline (2012, ApJS, 199, id. 35, 29 pp) — we see that the set of principal governing equations that is typically used in the astrophysics community to include the effects of radiation on self-gravitating fluid flows includes the,
the,
and — ignoring magnetic fields — a modified version of the,
Lagrangian Representation
of the Euler Equation,
<math>~\frac{d\vec{v}}{dt}</math> |
<math>~=</math> |
<math>~ - \frac{1}{\rho}\nabla P - \nabla \Phi + \frac{1}{\rho}\biggl(\frac{\chi}{c}\biggr) \vec{F} \, , </math> |
plus the following pair of additional energy-conservation-based dynamical equations:
<math>~\frac{d}{dt} \biggl( \frac{e}{\rho}\biggr)</math> |
<math>~=</math> |
<math>~ - \frac{P}{\rho}\nabla \cdot \vec{v} + \frac{1}{\rho} \biggl[c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p\biggr] \, , </math> |
<math>~\frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math> |
<math>~=</math> |
<math>~ - \frac{1}{\rho}\nabla \cdot \vec{F} - \vec{\bold{P}}:\nabla{\vec{v}} - \frac{1}{\rho} \biggl[c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p\biggr] \, . </math> |
Related Discussions
- Euler equation viewed from a rotating frame of reference.
- An earlier draft of this "Euler equation" presentation.
© 2014 - 2021 by Joel E. Tohline |