Difference between revisions of "User:Tohline/Appendix/Mathematics/ToroidalSynopsis01"
Line 51: | Line 51: | ||
<td align="left"> | <td align="left"> | ||
<math>~(\varpi + a)^2 + (z-Z_0)^2 \, ,</math> | <math>~(\varpi + a)^2 + (z-Z_0)^2 \, ,</math> | ||
</td> | |||
<td align="center"> and, </td> | |||
<td align="right"> | |||
<math>~r_2^2 </math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(\varpi - a)^2 + (z-Z_0)^2 \, ,</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
and <math>~\theta</math> has the same sign as <math>~(z-Z_0)</math>. Mapping the other direction, we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\varpi</math> | ||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{a \sinh\eta }{(\cosh\eta - \cos\theta)} \, ,</math> | |||
</td> | |||
<td align="center"> and, </td> | |||
<td align="right"> | |||
<math>~z-Z_0</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Note that, if <math>~\eta_0</math> identifies the surface of the uniform-density torus, then, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> |
Revision as of 00:57, 3 June 2018
Synopsis of Toroidal Coordinate Approach
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Here we attempt to bring together — in as succinct a manner as possible — our approach and C.-Y. Wong's (1973) approach to determining the gravitational potential of an axisymmetric, uniform-density torus that has a major radius, <math>~R</math>, and a minor, cross-sectional radius, <math>~d</math>. The relevant toroidal coordinate system is one based on an anchor ring of major radius,
<math>~a^2 \equiv R^2 - d^2 \, .</math>
If the meridional-plane location of the anchor ring — as written in cylindrical coordinates — is, <math>~(\varpi, z) = (a,Z_0)</math>, then the preferred toroidal-coordinate system has meridional-plane coordinates, <math>~(\eta, \theta)</math>, defined such that,
<math>~\eta</math> |
<math>~=</math> |
<math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math> |
and, |
<math>~\cos\theta</math> |
<math>~=</math> |
<math>~\frac{(r_1^2 + r_2^2 - 4a^2)}{2r_1 r_2} \, ,</math> |
where,
<math>~r_1^2 </math> |
<math>~\equiv</math> |
<math>~(\varpi + a)^2 + (z-Z_0)^2 \, ,</math> |
and, |
<math>~r_2^2 </math> |
<math>~\equiv</math> |
<math>~(\varpi - a)^2 + (z-Z_0)^2 \, ,</math> |
and <math>~\theta</math> has the same sign as <math>~(z-Z_0)</math>. Mapping the other direction, we have,
<math>~\varpi</math> |
<math>~=</math> |
<math>~\frac{a \sinh\eta }{(\cosh\eta - \cos\theta)} \, ,</math> |
and, |
<math>~z-Z_0</math> |
<math>~=</math> |
<math>~\frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \, .</math> |
Note that, if <math>~\eta_0</math> identifies the surface of the uniform-density torus, then,
<math>~\cosh\eta_0</math> |
<math>~=</math> |
<math>~\frac{R}{d} \, ,</math> |
<math>~\sinh\eta_0</math> |
<math>~=</math> |
<math>~\frac{a}{d} \, ,</math> |
and, |
<math>~\coth\eta_0</math> |
<math>~=</math> |
<math>~\frac{R}{a} \, .</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |