Difference between revisions of "User:Tohline/Appendix/Mathematics/ToroidalSynopsis01"
Line 25: | Line 25: | ||
<math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math> | <math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math> | ||
</td> | </td> | ||
< | <td align="center"> and, </td> | ||
< | |||
<td align="right"> | <td align="right"> | ||
<math>~\cos\theta</math> | <math>~\cos\theta</math> | ||
Line 93: | Line 91: | ||
<math>~\frac{a}{d} \, ,</math> | <math>~\frac{a}{d} \, ,</math> | ||
</td> | </td> | ||
<td align="center"> and </td> | <td align="center"> and, </td> | ||
<td align="right"> | <td align="right"> | ||
<math>~\coth\eta_0</math> | <math>~\coth\eta_0</math> |
Revision as of 00:48, 3 June 2018
Synopsis of Toroidal Coordinate Approach
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Here we attempt to bring together — in as succinct a manner as possible — our approach and C.-Y. Wong's (1973) approach to determining the gravitational potential of an axisymmetric, uniform-density torus that has a major radius, <math>~R</math>, and a minor, cross-sectional radius, <math>~d</math>. The relevant toroidal coordinate system is one based on an anchor ring of major radius,
<math>~a^2 \equiv R^2 - d^2 \, .</math>
If the meridional-plane location of the anchor ring — as written in cylindrical coordinates — is, <math>~(\varpi, z) = (a,Z_0)</math>, then the preferred toroidal-coordinate system has meridional-plane coordinates, <math>~(\eta, \theta)</math>, defined such that,
<math>~\eta</math> |
<math>~=</math> |
<math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math> |
and, |
<math>~\cos\theta</math> |
<math>~=</math> |
<math>~\frac{(r_1^2 + r_2^2 - 4a^2)}{2r_1 r_2} \, ,</math> |
where,
<math>~r_1^2 </math> |
<math>~\equiv</math> |
<math>~(\varpi + a)^2 + (z-Z_0)^2 \, ,</math> |
<math>~r_2^2 </math> |
<math>~\equiv</math> |
<math>~(\varpi - a)^2 + (z-Z_0)^2 \, ,</math> |
and <math>~\theta</math> has the same sign as <math>~(z-Z_0)</math>. Note that, if <math>~\eta_0</math> identifies the surface of the uniform-density torus, then,
<math>~\cosh\eta_0</math> |
<math>~=</math> |
<math>~\frac{R}{d} \, ,</math> |
<math>~\sinh\eta_0</math> |
<math>~=</math> |
<math>~\frac{a}{d} \, ,</math> |
and, |
<math>~\coth\eta_0</math> |
<math>~=</math> |
<math>~\frac{R}{a} \, .</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |