Difference between revisions of "User:Tohline/SSC/IsothermalCollapse"
Line 24: | Line 24: | ||
</div> | </div> | ||
but, in place of the adiabatic form of the 1<sup>st</sup> Law of Thermodynamics, we enforce isothermality both in space and time by adopting the | |||
but, in place of the adiabatic form of the 1<sup>st</sup> Law of Thermodynamics, we enforce isothermality both in space and time by adopting the, | |||
<div align="center"> | <div align="center"> | ||
<span id="EOS:Isothermal"><font color="#770000">'''Isothermal Equation of State'''</font></span><p></p> | |||
<math>~P = c_s^2 \rho \, ,</math> | <math>~P = c_s^2 \rho \, ,</math> | ||
</div> | </div> | ||
where, <math>~c_s</math>, is the isothermal sound speed. | where, <math>~c_s</math>, is the isothermal sound speed. Recognizing that the differential element of mass that is contained within a spherical shell of width, <math>~dr</math>, at radial location, <math>~r</math>, is, | ||
<div align="center"> | |||
<math>~dm = 4\pi r^2 \rho dr \, ,</math> | |||
</div> | |||
we see that the mass enclosed within radius, <math>~r</math>, is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~M_r</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi \int_0^4 r^2 \rho dr \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Hence, we find from the Poisson equation that, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\Phi}{dr}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{G}{r^2} \biggl[ 4\pi \int_0^4 r^2 \rho dr \biggr] = \frac{GM_r}{r^2} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
which, when combined with the Euler equation gives the, | |||
<div align="center" id="EulerPoisson"> | |||
<span id="PGE:Euler"><font color="#770000">'''Combined Euler + Poisson Equation'''</font></span><br /> | |||
<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{GM_r}{r^2} \, . </math><br /> | |||
</div> | |||
In summary, then, the collapse of an isothermal gas cloud can be modeled by appropriately specifying an initial state and value for the sound speed, then integrating forward in time, in a self-consistent fashion, the following coupled set of equations: | |||
<div align="center"> | |||
<table border="1" cellpadding="8" align="center"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~c_s^2 \rho </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dM_r}{dr} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi r^2 \rho \, , </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\rho}{dt} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dv_r}{dt} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{1}{\rho}\frac{dP}{dr} - \frac{GM_r}{r^2} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
=See Especially= | =See Especially= |
Revision as of 18:42, 7 July 2017
Collapse of Isothermal Spheres
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
We begin with the set of time-dependent governing equations for spherically symmetric systems, namely,
Equation of Continuity
<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>
Euler Equation
<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>
Poisson Equation
<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho \, ,</math>
but, in place of the adiabatic form of the 1st Law of Thermodynamics, we enforce isothermality both in space and time by adopting the,
<math>~P = c_s^2 \rho \, ,</math>
where, <math>~c_s</math>, is the isothermal sound speed. Recognizing that the differential element of mass that is contained within a spherical shell of width, <math>~dr</math>, at radial location, <math>~r</math>, is,
<math>~dm = 4\pi r^2 \rho dr \, ,</math>
we see that the mass enclosed within radius, <math>~r</math>, is,
<math>~M_r</math> |
<math>~=</math> |
<math>~4\pi \int_0^4 r^2 \rho dr \, .</math> |
Hence, we find from the Poisson equation that,
<math>~\frac{d\Phi}{dr}</math> |
<math>~=</math> |
<math>~\frac{G}{r^2} \biggl[ 4\pi \int_0^4 r^2 \rho dr \biggr] = \frac{GM_r}{r^2} \, ,</math> |
which, when combined with the Euler equation gives the,
Combined Euler + Poisson Equation
<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{GM_r}{r^2} \, . </math>
In summary, then, the collapse of an isothermal gas cloud can be modeled by appropriately specifying an initial state and value for the sound speed, then integrating forward in time, in a self-consistent fashion, the following coupled set of equations:
|
See Especially
- P. Bodenheimer & A. Sweigart (1968, ApJ, 152, 515): Dynamic Collapse of the Isothermal Sphere
- M. V. Penston (1969, MNRAS, 144, 425): Dynamics of Self-Gravitating Gaseous Sphers - III. Analytic Results in the Free-Fall of Isothermal Cases
- Richard B. Larson (1969, MNRAS, 145, 271): Numerical Calculations of the Dynamics of Collapsing Proto-Star
- F. H. Shu (1977, ApJ, 214, 488-497): Self-Similar Collapse of Isothermal Spheres and Star Formation
- C. Hunter (1977, ApJ, 218, 834-845): The Collapse of Unstable Isothermal Spheres
- A. Whitworth & D. Summers (1985, MNRAS, 214, 1 - 25): Self-Similar Condensation of Spherically Symmetric Self-Gravitting Isothermal Gas Clouds
- Prudence N. Foster & Roger A. Chevalier (1993, ApJ, 416, 303): Gravitational Collapse of an Isothermal Sphere
- A. C. Raga, J. C. Rodríguez-Ramírez, A. Rodríguez-González, V. Lora, & A. Esquivel (2013, Revista Mexicana de Astronomía y Astrofísica, 49, 127-135): Analytic and Numerical Calculations of the Radial Stability of the Isothermal Spheres
© 2014 - 2021 by Joel E. Tohline |