Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
Line 82: | Line 82: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~-a R^{-1} + | <math>~-a \biggl(\frac{R}{R_0}\biggr)^{-1} + b\biggl(\frac{R}{R_0}\biggr)^{3-3\gamma}+ c\biggl(\frac{R}{R_0}\biggr)^3 \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 90: | Line 90: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d\mathfrak{G}}{dR}</math> | <math>~R_0 ~\frac{d\mathfrak{G}}{dR}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 96: | Line 96: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~a\biggl(\frac{R}{R_0}\biggr)^{-2} +(3-3\gamma)b\biggl(\frac{R}{R_0}\biggr)^{2-3\gamma} + 3c\biggl(\frac{R}{R_0}\biggr)^2</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 107: | Line 107: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\frac{R_0}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 223: | Line 223: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d^2 \mathfrak{G}}{dR^2}</math> | <math>~R_0^2 ~\frac{d^2 \mathfrak{G}}{dR^2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 230: | Line 230: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | -2a\biggl(\frac{R}{R_0}\biggr)^{-3} + (3-3\gamma)(2-3\gamma)b \biggl(\frac{R}{R_0}\biggr)^{1-3\gamma} + 6c\biggl(\frac{R}{R_0}\biggr) | ||
</math> | </math> | ||
</td> | </td> | ||
Line 242: | Line 242: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\biggl(\frac{R_0}{R} \biggr)^2\biggl[ | ||
2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | 2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | ||
\biggr] \, . | \biggr] \, . | ||
Line 410: | Line 410: | ||
|} | |} | ||
==Pointers to Relevant Chapters== | ==Pointers to Relevant Chapters== |
Revision as of 21:15, 25 June 2017
Spherically Symmetric Configurations Synopsis (Using Style Sheet)
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Tabular Overview
| |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | |||||||||||||||||||
① Detailed Force Balance | ② Free-Energy Identification of Equilibria | ||||||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| ||||||||||||||||||
③ Virial Equilibrium | |||||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
| |||||||||||||||||||
Stability Analysis | |||||||||||||||||||
④ Perturbation Theory | ⑤ Free-Energy Analysis of Stability | ||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
| ||||||||||||||||||
⑥ Variational Principle | |||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| |||||||||||||||||||
⑦ Approximation: Homologous Expansion/Contraction | |||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
Pointers to Relevant Chapters
⓪ Background Material:
· | Principal Governing Equations (PGEs) in most general form being considered throughout this H_Book |
---|---|
· | PGEs in a form that is relevant to a study of the Structure, Stability, & Dynamics of spherically symmetric systems |
· | Supplemental relations — see, especially, barotropic equations of state |
① Detailed Force Balance:
· | Derivation of the equation of Hydrostatic Balance, and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as Technique 1 |
---|
③ Virial Equilibrium:
· | Formal derivation of the multi-dimensional, 2nd-order tensor virial equations |
---|---|
· | Scalar Virial Theorem, as appropriate for spherically symmetric configurations |
· | Generalization of scalar virial theorem to include the bounding effects of a hot, tenuous external medium |
See Also
© 2014 - 2021 by Joel E. Tohline |