Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
(Created page with '__FORCETOC__ <!-- __NOTOC__ will force TOC off --> =Spherically Symmetric Configurations Synopsis= {{LSU_HBook_header}} <table border="1" cellpadding="8" width="85%" align=…') |
|||
Line 7: | Line 7: | ||
==New Table Construction== | |||
{| class="wikitable" style="margin: auto; color:black;" border="1" cellpadding="12" | |||
|- | |||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion</b></font> — adiabatic index, <math>~\gamma</math> | |||
|- | |||
! colspan="2" | | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~dV = 4\pi r^2 dr</math> | |||
</td> | |||
<td align="center"> | |||
and | |||
</td> | |||
<td align="left"> | |||
<math>~dM_r = \rho dV ~~~\Rightarrow ~~~M_r = 4\pi \int_0^r \rho r^2 dr</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~W_\mathrm{grav}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r ~~ \propto ~~ R^{-1}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~U_\mathrm{int}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr ~~ \propto ~~ R^{3-3\gamma}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
|- | |||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Equilibrium Structure</b></font> | |||
|- | |||
! style="text-allign:center;" |<b>Detailed Force Balance</b> | |||
! style="text-allign:center;" |<b>Free-Energy Analysis</b> | |||
|} | |||
==Old Table Construction== | |||
<table border="1" cellpadding="8" width="85%" align="center"> | <table border="1" cellpadding="8" width="85%" align="center"> | ||
<tr> | <tr> |
Revision as of 23:30, 18 June 2017
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
New Table Construction
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||
Equilibrium Structure | ||||||||||
Detailed Force Balance | Free-Energy Analysis |
Old Table Construction
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||||
|
|||||||||||||||||||
Equilibrium Structure |
|||||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||||
Virial Equilibrium | |||||||||||||||||||
|
|||||||||||||||||||
Stability Analysis |
|||||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
|
||||||||||||||||||
Variational Principle |
|||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
|
|||||||||||||||||||
Approximation: Homologous Expansion/Contraction |
|||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |