Difference between revisions of "User:Tohline/Appendix/Ramblings/PowerSeriesExpressions"
Line 6: | Line 6: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Polytropic Lane-Emden Function== | ==Broadly Used Mathematical Expressions (shown here without proof)== | ||
===Binomial=== | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~(1 \pm x)^n</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 ~\pm ~nx + \biggl[\frac{n(n-1)}{2!}\biggr]x^2 | |||
~\pm~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]x^3 | |||
+ \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]x^4 | |||
~~\pm ~~ \cdots | |||
</math> | |||
for <math>~(x^2 < 1)</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
See also: | |||
* [http://mathworld.wolfram.com/BinomialTheorem.html Wolfram's presentation] | |||
===Exponential=== | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~e^x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
==Expressions with Astrophysical Relevance== | |||
===Polytropic Lane-Emden Function=== | |||
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation, | We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation, | ||
<div align="center"> | <div align="center"> | ||
Line 25: | Line 75: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + \cdots | \theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots | ||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
First derivative: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\Theta_H}{d\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
a + 2b\xi + 3c\xi^2 + 4d\xi^3 + 5e\xi^4 + 6f\xi^5 + 7g\xi^6 + 8h\xi^7 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Left-hand-side of Lane-Emden equation: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2a}{\xi} + 2\cdot 3b + 2^2\cdot 3c\xi + 2^2\cdot 5d\xi^2 + 2\cdot 3\cdot 5e\xi^3 + 2\cdot 3\cdot 7f\xi^4 + 2^3\cdot 7g\xi^5 + 2^3\cdot 3^2h\xi^6 + \cdots | |||
</math> | </math> | ||
</td> | </td> | ||
Line 32: | Line 122: | ||
</div> | </div> | ||
Right-hand-side of Lane-Emden equation (adopt the normalization, <math>~\theta_0=1</math>, then use the [[#Binomial|binomial theorem]] recursively): | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Theta_H^n</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 | |||
~+~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]F^3 | |||
+ \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]F^4 | |||
~~+ ~~ \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~F</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
a\xi\biggl[1 + \frac{b}{a}\xi + \frac{c}{a}\xi^2 + \frac{d}{a}\xi^3 + \frac{e}{a}\xi^4 + \frac{f}{a}\xi^5 + \frac{g}{a}\xi^6 + \frac{h}{a}\xi^7 + \cdots\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<font color="red">First approximation</font>: Assume that <math>~e=f=g=h=0</math>, in which case the LHS contains terms only up through <math>~\xi^2</math>. This means that we must ignore all terms on the RHS that are of higher order than <math>~\xi^2</math>; that is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Theta_H^n</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 ~+ ~n(a\xi+b\xi^2) + \biggl[\frac{n(n-1)}{2!}\biggr]a^2\xi^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 ~+~na\xi + ~\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]\xi^2\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>. Remembering to include a negative sign on the RHS, we find: | |||
<div align="center"> | |||
<table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center">Term</td> | |||
<td align="center">LHS</td> | |||
<td align="center">RHS</td> | |||
<td align="center">Implication</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{-1}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~2a</math> | |||
</td> | |||
<td align="center"> | |||
<math>~0</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~a=0</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{0}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~2\cdot 3 b</math> | |||
</td> | |||
<td align="center"> | |||
<math>~-1</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~b=- \frac{1}{6}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{1}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~2^2\cdot 3 c</math> | |||
</td> | |||
<td align="center"> | |||
<math>~-na</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~c=0</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{2}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~2^2\cdot 5 d</math> | |||
</td> | |||
<td align="center"> | |||
<math>~-\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~d=+\frac{n}{120}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
By including higher and higher order terms in the series expansion for <math>~\Theta_H</math>, and proceeding along the same line of deductive reasoning, one finds: | |||
* Expressions for the four coefficients, <math>~a, b, c, d</math>, remain unchanged. | |||
* The coefficient is zero for all other terms that contain ''odd'' powers of <math>~\xi</math>; specifically, for example, <math>~e = g = 0</math>. | |||
* The coefficients of <math>~\xi^6</math> and <math>~\xi^8</math> are, respectively, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{n}{378}\biggl(\frac{n}{5}-\frac{1}{8} \biggr) \, ;</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~h</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{n(122n^2 -183n + 70)}{3265920} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
In summary, the desired, approximate power-series expression for the polytropic Lane-Emden function is: | |||
<div align="center" id="PolytropicLaneEmden"> | <div align="center" id="PolytropicLaneEmden"> | ||
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center"> | <table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center"> | ||
Line 55: | Line 353: | ||
</div> | </div> | ||
==Isothermal Lane-Emden Function== | ===Isothermal Lane-Emden Function=== | ||
We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> — expanded about the coordinate center, <math>~r = 0</math> — that approximately satisfies the isothermal Lane-Emden equation, | We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> — expanded about the coordinate center, <math>~r = 0</math> — that approximately satisfies the isothermal Lane-Emden equation, | ||
<div align="center"> | <div align="center"> | ||
Line 121: | Line 419: | ||
* Equation (377) from §22 in Chapter IV of [[User:Tohline/Appendix/References#C67|C67]]). | * Equation (377) from §22 in Chapter IV of [[User:Tohline/Appendix/References#C67|C67]]). | ||
==Displacement Function for Polytropic LAWE== | ===Displacement Function for Polytropic LAWE=== | ||
==Displacement Function for Isothermal LAWE== | ===Displacement Function for Isothermal LAWE=== | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 00:18, 26 February 2017
Approximate Power-Series Expressions
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Broadly Used Mathematical Expressions (shown here without proof)
Binomial
<math>~(1 \pm x)^n</math> |
<math>~=</math> |
<math>~ 1 ~\pm ~nx + \biggl[\frac{n(n-1)}{2!}\biggr]x^2 ~\pm~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]x^3 + \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]x^4 ~~\pm ~~ \cdots </math> for <math>~(x^2 < 1)</math> |
See also:
Exponential
<math>~e^x</math> |
<math>~=</math> |
<math>~ 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots </math> |
Expressions with Astrophysical Relevance
Polytropic Lane-Emden Function
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation,
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math> |
A general power-series should be of the form,
<math>~\Theta_H</math> |
<math>~=</math> |
<math>~ \theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots </math> |
First derivative:
<math>~\frac{d\Theta_H}{d\xi}</math> |
<math>~=</math> |
<math>~ a + 2b\xi + 3c\xi^2 + 4d\xi^3 + 5e\xi^4 + 6f\xi^5 + 7g\xi^6 + 8h\xi^7 + \cdots </math> |
Left-hand-side of Lane-Emden equation:
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr)</math> |
<math>~=</math> |
<math>~ \frac{2a}{\xi} + 2\cdot 3b + 2^2\cdot 3c\xi + 2^2\cdot 5d\xi^2 + 2\cdot 3\cdot 5e\xi^3 + 2\cdot 3\cdot 7f\xi^4 + 2^3\cdot 7g\xi^5 + 2^3\cdot 3^2h\xi^6 + \cdots </math> |
Right-hand-side of Lane-Emden equation (adopt the normalization, <math>~\theta_0=1</math>, then use the binomial theorem recursively):
<math>~\Theta_H^n</math> |
<math>~=</math> |
<math>~ 1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 ~+~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]F^3 + \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]F^4 ~~+ ~~ \cdots </math> |
where,
<math>~F</math> |
<math>~\equiv</math> |
<math>~ a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots </math> |
|
<math>~=</math> |
<math>~ a\xi\biggl[1 + \frac{b}{a}\xi + \frac{c}{a}\xi^2 + \frac{d}{a}\xi^3 + \frac{e}{a}\xi^4 + \frac{f}{a}\xi^5 + \frac{g}{a}\xi^6 + \frac{h}{a}\xi^7 + \cdots\biggr] \, . </math> |
First approximation: Assume that <math>~e=f=g=h=0</math>, in which case the LHS contains terms only up through <math>~\xi^2</math>. This means that we must ignore all terms on the RHS that are of higher order than <math>~\xi^2</math>; that is,
<math>~\Theta_H^n</math> |
<math>~\approx</math> |
<math>~ 1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 </math> |
|
<math>~\approx</math> |
<math>~ 1 ~+ ~n(a\xi+b\xi^2) + \biggl[\frac{n(n-1)}{2!}\biggr]a^2\xi^2 </math> |
|
<math>~\approx</math> |
<math>~ 1 ~+~na\xi + ~\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]\xi^2\, . </math> |
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>. Remembering to include a negative sign on the RHS, we find:
Term | LHS | RHS | Implication |
<math>~\xi^{-1}:</math> |
<math>~2a</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~a=0</math> |
<math>~\xi^{0}:</math> |
<math>~2\cdot 3 b</math> |
<math>~-1</math> |
<math>~\Rightarrow ~~~b=- \frac{1}{6}</math> |
<math>~\xi^{1}:</math> |
<math>~2^2\cdot 3 c</math> |
<math>~-na</math> |
<math>~\Rightarrow ~~~c=0</math> |
<math>~\xi^{2}:</math> |
<math>~2^2\cdot 5 d</math> |
<math>~-\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]</math> |
<math>~\Rightarrow ~~~d=+\frac{n}{120}</math> |
By including higher and higher order terms in the series expansion for <math>~\Theta_H</math>, and proceeding along the same line of deductive reasoning, one finds:
- Expressions for the four coefficients, <math>~a, b, c, d</math>, remain unchanged.
- The coefficient is zero for all other terms that contain odd powers of <math>~\xi</math>; specifically, for example, <math>~e = g = 0</math>.
- The coefficients of <math>~\xi^6</math> and <math>~\xi^8</math> are, respectively,
<math>~f</math> |
<math>~=</math> |
<math>~- \frac{n}{378}\biggl(\frac{n}{5}-\frac{1}{8} \biggr) \, ;</math> |
<math>~h</math> |
<math>~=</math> |
<math>~\frac{n(122n^2 -183n + 70)}{3265920} \, .</math> |
In summary, the desired, approximate power-series expression for the polytropic Lane-Emden function is:
|
Isothermal Lane-Emden Function
We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> — expanded about the coordinate center, <math>~r = 0</math> — that approximately satisfies the isothermal Lane-Emden equation,
<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} </math> |
<math>~=</math> |
<math>~e^{-w} \, . </math> |
A general power-series should be of the form,
<math>~w</math> |
<math>~=</math> |
<math>~ w_0 + ar + br^2 + cr^3 + dr^4 + er^5 + fr^6 + gr^7 + hr^8 +\cdots </math> |
Result:
|
See also:
- Equation (377) from §22 in Chapter IV of C67).
Displacement Function for Polytropic LAWE
Displacement Function for Isothermal LAWE
© 2014 - 2021 by Joel E. Tohline |