|
|
Line 6: |
Line 6: |
| {{LSU_HBook_header}} | | {{LSU_HBook_header}} |
|
| |
|
| | ==Setup== |
| We'll begin with the linear-adiabatic wave equations that describe oscillations of the core and envelope, separately. We also will immediately restrict our investigation to configurations for which, | | We'll begin with the linear-adiabatic wave equations that describe oscillations of the core and envelope, separately. We also will immediately restrict our investigation to configurations for which, |
| <div align="center"> | | <div align="center"> |
Line 33: |
Line 34: |
| (1 - \eta^2)\frac{d^2x}{d\eta^2} + | | (1 - \eta^2)\frac{d^2x}{d\eta^2} + |
| ( 4 - 6\eta^2 ) \frac{1}{\eta} \cdot \frac{dx}{d\eta} | | ( 4 - 6\eta^2 ) \frac{1}{\eta} \cdot \frac{dx}{d\eta} |
| + \mathfrak{F}_\mathrm{core} x \, . | | + \mathfrak{F}_\mathrm{core} x \, , |
| </math> | | </math> |
| </td> | | </td> |
Line 53: |
Line 54: |
| <td align="right"> | | <td align="right"> |
| <math>~0</math> | | <math>~0</math> |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| \biggl[ 1 + \frac{(g^2-\mathcal{B}) \xi}{\mathcal{A}} - \mathcal{D} \xi^3\biggr] \frac{d^2x}{d\xi^2}
| |
| + \biggl\{ 3 + \frac{4(g^2-\mathcal{B}) \xi}{\mathcal{A}} - 6\mathcal{D} \xi^3 \biggr\}
| |
| \frac{1}{\xi} \cdot \frac{dx}{d\xi}
| |
| + \biggl[
| |
| \mathcal{D} \biggl(\frac{\rho_c}{\rho_e}\biggr) \biggl( \mathfrak{F}_\mathrm{env} + 2\alpha_e -2\alpha_e\frac{\rho_e}{\rho_c} \biggr)\xi^3 -\alpha_e
| |
| \biggr]\frac{x}{\xi^2}
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td> | | </td> |
| <td align="center"> | | <td align="center"> |
Line 90: |
Line 72: |
| <div align="center"> | | <div align="center"> |
| <table border="0" cellpadding="5" align="center"> | | <table border="0" cellpadding="5" align="center"> |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathcal{A}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~2\biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \, ;
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathcal{B}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~1 + 2\biggl(\frac{\rho_e}{\rho_c}\biggr) - 3\biggl(\frac{\rho_e}{\rho_c}\biggr)^2
| |
| \, ,
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathcal{D}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{1}{\mathcal{A}}\biggl( \frac{\rho_e}{\rho_c}\biggr)^2 = \biggl[ \frac{\rho_e/\rho_c}{2(1-\rho_e/\rho_c)} \biggr]
| |
| \, ,
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathfrak{F}_\mathrm{env}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{3\omega^2_\mathrm{env}}{2\pi G \gamma_e \rho_e} - 2\alpha_e
| |
| \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
|
| |
|
| |
| In a [[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#BiPolytrope_with_nc_.3D_0_and_ne_.3D_0|separate chapter on astrophysical interesting ''equilibrium structures'']], we have derived analytical expressions that define the equilibrium properties of bipolytropic configurations having <math>~(n_c, n_e) = (0, 0)</math>, that is, bipolytropes in which both the core and the envelope are uniform in density, but the densities in the two regions are different from one another. Letting <math>~R</math> be the radius and <math>~M_\mathrm{tot}</math> be the total mass of the bipolytrope, these configurations are fully defined once any two of the following three key parameters have been specified: The envelope-to-core density ratio, <math>~\rho_e/\rho_c</math>; the radial location of the envelope/core interface, <math>~q \equiv r_i/R</math>; and, the fractional mass that is contained within the core, <math>~\nu \equiv M_\mathrm{core}/M_\mathrm{tot}</math>. These three parameters are related to one another via the expression,
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\frac{\rho_e}{\rho_c}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{q^3}{\nu} \biggl( \frac{1-\nu}{1-q^3} \biggr) \, .</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
|
| |
| Equilibrium configurations can be constructed that have a wide range of parameter values; specifically,
| |
| <div align="center">
| |
| <math>~0 \le q \le 1 \, ;</math>
| |
|
| |
| <math>~0 \le \nu \le 1 \, ;</math>
| |
|
| |
| and,
| |
|
| |
| <math>~0 \le \frac{\rho_e}{\rho_c} \le 1 \, .</math>
| |
| </div>
| |
| (We recognize from buoyancy arguments that any configuration in which the envelope density is larger than the core density will be Rayleigh-Taylor unstable, so we restrict our astrophysical discussion to structures for which <math>~\rho_e < \rho_c</math>.)
| |
|
| |
|
| |
| By employing the [[User:Tohline/SSC/Perturbations#Spherically_Symmetric_Configurations_.28Stability_.E2.80.94_Part_II.29|linear stability analysis techniques described in an accompanying chapter]], we should, in principle, be able to identify a wide range of eigenvectors — that is, radial eigenfunctions and accompanying eigenfrequencies — that are associated with adiabatic radial oscillation modes in any one of these equilibrium, bipolytropic configurations. Using numerical techniques, [http://adsabs.harvard.edu/abs/1985PASAu...6..222M Murphy & Fiedler (1985)], for example, have carried out such an analysis of bipolytropic structures having <math>~(n_c, n_e) = (1,5)</math>. A ''pair'' of [[User:Tohline/SSC/Perturbations#2ndOrderODE|linear adiabatic wave equations (LAWEs)]] must be solved — one tuned to accommodate the properties of the core and another tuned to accommodate the properties of the envelope — then the pair of eigenfunctions must be matched smoothly at the radial location of the interface; the identified core- and envelope-eigenfrequencies must simultaneously match.
| |
|
| |
|
| |
| After identifying the precise form of the LAWEs that apply to the case of <math>~(n_c, n_e) = (0,0)</math> bipolytropes, we discovered that, for a restricted range of key parameters, the pair of equations can both be solved ''analytically''.
| |
|
| |
| ==Two Separate LAWEs==
| |
|
| |
| In an [[User:Tohline/SSC/Perturbations#2ndOrderODE|accompanying discussion]], we derived the so-called,
| |
|
| |
| <div align="center" id="2ndOrderODE">
| |
| <font color="#770000">'''Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br />
| |
|
| |
| {{User:Tohline/Math/EQ_RadialPulsation01}}
| |
| </div>
| |
|
| |
| <!--
| |
| <div align="center" id="2ndOrderODE">
| |
| <font color="#770000">'''Adiabatic Wave Equation'''</font><br />
| |
|
| |
| <math>
| |
| \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 \, ,
| |
| </math>
| |
| </div>
| |
| -->
| |
| For both regions of the bipolytrope, we define the dimensionless (Lagrangian) radial coordinate,
| |
| <div align="center">
| |
| <math>~\xi \equiv \frac{r_0}{r_i} \, .</math>
| |
| </div>
| |
| So, the interface is, by definition, located at <math>~\xi = 1</math>; and, the surface is necessarily at <math>~\xi = q^{-1}</math>. As the material in the bipolytrope's core (envelope) is compressed/de-compressed during a radial oscillation, we will assume that heating/cooling occurs in a manner prescribed by an adiabat of index <math>~\gamma_c ~(\gamma_e)</math>; in general, <math>~\gamma_e \ne \gamma_c</math>. For convenience, we will also adopt the frequently used shorthand "alpha" notation,
| |
| <div align="center">
| |
| <math>~\alpha_c \equiv 3 - \frac{4}{\gamma_c} \, ,</math>
| |
| and
| |
| <math>~\alpha_e \equiv 3 - \frac{4}{\gamma_e} \, .</math>
| |
| </div>
| |
|
| |
|
| |
| ===The Core's LAWE===
| |
| After adopting, for convenience, the function notation,
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~g^2</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>
| |
| 1 + \biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( 1-q \biggr) +
| |
| \frac{\rho_e}{\rho_c} \biggl(\frac{1}{q^2} - 1\biggr) \biggr] \, ,
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| we [[User:Tohline/SSC/Stability/BiPolytrope0_0Details#Match_Prasad-like_Envelope_Eigenvector_to_the_Core_Eigenvector|have deduced]] that, for the core, the LAWE may be written in the form,
| |
|
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~0</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| (1 - \eta^2)\frac{d^2x}{d\eta^2} +
| |
| ( 4 - 6\eta^2 ) \frac{1}{\eta} \cdot \frac{dx}{d\eta}
| |
| + \mathfrak{F}_\mathrm{core} x \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| where,
| |
| <div align="center">
| |
| <math>~\eta \equiv \frac{\xi}{g} \, ,</math>
| |
| and
| |
| <math>~\mathfrak{F}_\mathrm{core} \equiv \frac{3\omega_\mathrm{core}^2}{2\pi G\gamma_c \rho_c} - 2\alpha_c\, .</math>
| |
| </div>
| |
| Not surprisingly, this is identical in form to the eigenvalue problem that was first presented — and solved analytically — by [[User:Tohline/SSC/UniformDensity#Setup_as_Presented_by_Sterne_.281937.29|Sterne (1937)]] in connection with his examination of radial oscillations in ''isolated'' uniform-density spheres. As is demonstrated below, for the core of our zero-zero bipolytrope, we can in principle adopt any one of the [[User:Tohline/SSC/UniformDensity#Sterne.27s_General_Solution|polynomial eigenfunctions and corresponding eigenfrequencies]] derived by Sterne.
| |
|
| |
|
| |
| ===The Envelope's LAWE===
| |
|
| |
| Subsequently, we also [[User:Tohline/SSC/Stability/BiPolytrope0_0Details#More_General_Solution|have deduced]] that, for the envelope, the governing LAWE becomes,
| |
|
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~0</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| \biggl[ 1 + \frac{(g^2-\mathcal{B}) \xi}{\mathcal{A}} - \mathcal{D} \xi^3\biggr] \frac{d^2x}{d\xi^2}
| |
| + \biggl\{ 3 + \frac{4(g^2-\mathcal{B}) \xi}{\mathcal{A}} - 6\mathcal{D} \xi^3 \biggr\}
| |
| \frac{1}{\xi} \cdot \frac{dx}{d\xi}
| |
| + \biggl[
| |
| \mathcal{D} \biggl(\frac{\rho_c}{\rho_e}\biggr) \biggl( \mathfrak{F}_\mathrm{env} + 2\alpha_e -2\alpha_e\frac{\rho_e}{\rho_c} \biggr)\xi^3 -\alpha_e
| |
| \biggr]\frac{x}{\xi^2} \, ,
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| where,
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathcal{A}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~2\biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \, ;
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathcal{B}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~1 + 2\biggl(\frac{\rho_e}{\rho_c}\biggr) - 3\biggl(\frac{\rho_e}{\rho_c}\biggr)^2
| |
| \, ,
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathcal{D}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~\equiv</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{1}{\mathcal{A}}\biggl( \frac{\rho_e}{\rho_c}\biggr)^2 = \biggl[ \frac{\rho_e/\rho_c}{2(1-\rho_e/\rho_c)} \biggr]
| |
| \, ,
| |
| </math>
| |
| </td>
| |
| </tr>
| |
|
| |
|
| <tr> | | <tr> |
Line 356: |
Line 89: |
| </div> | | </div> |
|
| |
|
| <span id="KeyConstraint">We have been unable</span> to demonstrate that this governing equation can be solved analytically for ''arbitrary'' pairs of the key model parameters, <math>~q</math> and <math>~\rho_e/\rho_c</math>. But, if we choose parameter value pairs that satisfy the constraint,
| | ==Initial Focus== |
| <div align="center">
| |
| <math>~g^2 = \mathcal{B} </math>
| |
| <math>~\Rightarrow</math>
| |
| <math>~g = \frac{1}{1+2q^3} \, ,</math>
| |
| and,
| |
| <math>~q^3 = \mathcal{D} = \biggl[ \frac{\rho_e/\rho_c}{2(1-\rho_e/\rho_c)} \biggr] </math>
| |
| <math>~\Rightarrow</math>
| |
| <math>~\frac{\rho_e}{\rho_c} = \frac{2q^3}{1+2q^3} \, ,</math>
| |
| </div>
| |
| | |
| | |
| <div align="center">
| |
| <table border="1" cellpadding="8" align="center" width="70%">
| |
| <tr><td align="left">
| |
| <font color="red">'''WRONG!'''</font> The expression that relates <math>~g^2</math> to <math>~q^3</math> should read,
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
| | |
| <tr>
| |
| <td align="right">
| |
| <math>~g^2</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{1+8q^3}{(1+2q^3)^2} = \frac{1+8\mathcal{D} }{(1+2\mathcal{D})^2}</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| </td></tr>
| |
| </table>
| |
| </div>
| |
| | |
| | |
| then the LAWE that is relevant to the envelope simplifies. Specifically, it takes the form,
| |
| | |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
| | |
| <tr>
| |
| <td align="right">
| |
| <math>~0</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~
| |
| ( 1 - q^3 \xi^3 ) \frac{d^2x}{d\xi^2} + ( 3 - 6q^3 \xi^3 ) \frac{1}{\xi} \cdot \frac{dx}{d\xi}
| |
| +
| |
| \biggl[ q^3 \mathfrak{F}_\mathrm{env} \xi^3 -\alpha_e
| |
| \biggr]\frac{x}{\xi^2}
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td align="right">
| |
|
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~\frac{x}{\xi^2}\biggl\{
| |
| ( 1 - q^3 \xi^3 )
| |
| \biggl[ \frac{d}{d\ln\xi} \biggl( \frac{d\ln x}{d\ln \xi} \biggr) - \biggl( 1 - \frac{d\ln x}{d\ln \xi} \biggr)\cdot \frac{d\ln x}{d\ln \xi}\biggr]
| |
| + ( 3 - 6q^3 \xi^3 ) \frac{d\ln x}{d\ln \xi}
| |
| + \biggl[ q^3 \mathfrak{F}_\mathrm{env} \xi^3 -\alpha_e
| |
| \biggr] \biggr\}
| |
| \, .
| |
| </math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
| Shortly after deriving this last expression, we realized that one possible solution is a simple power-law eigenfunction of the form,
| |
| <div align="center">
| |
| <math>~x=a_0 \xi^{c_0} \, ,</math>
| |
| </div>
| |
| where the (constant) exponent is one of the roots of the quadratic equation,
| |
| <div align="center">
| |
| <math>~c_0^2 + 2c_0 - \alpha_e = 0 \, ,</math>
| |
| <math>~\Rightarrow</math>
| |
| <math>~c_0 = -1 \pm \sqrt{1+\alpha_e} \, .</math>
| |
| </div>
| |
| This power-law eigenfunction must be paired with the associated, dimensionless eigenfrequency parameter,
| |
| <div align="center">
| |
| <table border="0" cellpadding="5" align="center">
| |
| | |
| <tr>
| |
| <td align="right">
| |
| <math>~\mathfrak{F}_\mathrm{env}</math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~c_0(c_0+5) = 3c_0 + \alpha_e</math>
| |
| </td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td align="right">
| |
| <math>~\Rightarrow ~~~ \frac{3\omega^2_\mathrm{env}}{2\pi G \gamma_e \rho_e} </math>
| |
| </td>
| |
| <td align="center">
| |
| <math>~=</math>
| |
| </td>
| |
| <td align="left">
| |
| <math>~ 3(c_0 + \alpha_e) = 3[\alpha_e -1 \pm \sqrt{1+\alpha_e}] \, .</math>
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| </div>
| |
|
| |
|
| Next, [[User:Tohline/SSC/Stability/BiPolytrope0_0Details#Eureka_Regarding_Prasad.27s_1948_Paper|we noticed]] the strong similarities between the mathematical properties of this eigenvalue problem and the one that was studied by [http://adsabs.harvard.edu/abs/1948MNRAS.108..414P C. Prasad (1948, MNRAS, 108, 414-416)] in connection with, what we now recognize to be, a closely related problem. Drawing heavily from Prasad's analysis, we discovered an infinite number of eigenfunctions (each, a truncated polynomial expression) and associated eigenfrequencies that satisfy this governing envelope LAWE. The eigenvectors associated with the lowest few modes are tabulated, below.
| |
|
| |
|
|
| |
|
| {{LSU_HBook_footer}} | | {{LSU_HBook_footer}} |