Difference between revisions of "User:Tohline/SSC/Stability/BiPolytrope0 0"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Groundwork: Work through wave equation for envelope of zero-zero bipolytrope)
Line 460: Line 460:
1 - \frac{1}{g^2}\biggl\{ 1  -  
1 - \frac{1}{g^2}\biggl\{ 1  -  
\biggl(\frac{\rho_e}{\rho_c}\biggr)  \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{1}{\xi} -  
\biggl(\frac{\rho_e}{\rho_c}\biggr)  \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{1}{\xi} -  
1\biggr) - \frac{\rho_e}{\rho_c} (\xi^2 - 1) \biggr] \biggr\} \, ,
1\biggr) - \frac{\rho_e}{\rho_c} (\xi^2 - 1) \biggr] \biggr\}  
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{g^2 P_0}{P_c}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
g^2 -  1  +
\biggl(\frac{\rho_e}{\rho_c}\biggr)  \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{1}{\xi} -
1\biggr) - \frac{\rho_e}{\rho_c} (\xi^2 - 1) \biggr]  \, ,
</math>
</math>
   </td>
   </td>
Line 537: Line 553:


<math>
<math>
\frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr]  x = 0 \, ,
\frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0}  
- \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0}  
+ \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2  
+ (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr]  x = 0 \, ,
</math>
</math>
</div>
</div>
Line 550: Line 569:
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{q^2 g^2 R^2 P_0}{P_c} \biggl\{
\frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0}
- \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} \biggr\}
+ \frac{q^2 g^2 R^2 \rho_0}{P_c} \biggl[ \frac{\omega^2 }{\gamma_\mathrm{g}}
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr)\frac{g_0}{r_0} \biggr]  x
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{g^2 P_0}{P_c} \biggl\{
\frac{d^2x}{d\xi^2} + \biggl[4
- \biggl(\frac{qRg_0 \rho_e}{P_0}\biggr) \xi\biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} \biggr\}
+ \frac{q^2 g^2 R^2 \rho_e}{P_c} \biggl[ \frac{\omega^2 }{\gamma_\mathrm{g}}
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr)\frac{g_0}{r_0} \biggr]  x
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{g^2 P_0}{P_c} \biggl[
\frac{d^2x}{d\xi^2} + \frac{4}{\xi} \cdot \frac{dx}{d\xi} \biggr]
- \biggl(\frac{qg^2Rg_0 \rho_e}{P_c}\biggr)  \frac{dx}{d\xi}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{g^2 P_0}{P_c} \cdot \frac{d^2x}{d\xi^2} + \biggl[ 4\biggl( \frac{g^2 P_0}{P_c} \biggr)
+ 2\biggl(\frac{\rho_e}{\rho_c}\biggr) \frac{3}{4\pi G \rho_c} \biggl\{
- \biggl(\frac{q g^2 R g_0 \rho_0 }{P_c}\biggr) \xi \biggr] \frac{1}{\xi} \frac{dx}{d\xi}
\frac{\omega^2 }{\gamma_\mathrm{g}}
+ \biggl(\frac{q^2 R^2 g^2\rho_0}{ P_c} \biggr)\biggl[\frac{\omega^2}{\gamma_\mathrm{g} }  
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr)\biggl(\frac{4\pi G \rho_c}{3}\biggr)  
+ \biggl(\frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)\frac{g_0}{r_0} \biggrx  
\biggl[ \frac{1}{\xi^3} + \frac{\rho_e}{\rho_c}\biggl(1-\frac{1}{\xi^3}\biggr) \biggr]
\biggr\} x  
</math>
</math>
   </td>
   </td>
Line 570: Line 640:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{g^2 P_0}{P_c} \cdot \frac{d^2x}{d\xi^2} + \biggl[ 4\biggl( \frac{g^2 P_0}{P_c} \biggr)
\frac{g^2 P_0}{P_c} \biggl[
- \biggl(\frac{q g^2 R g_0 \rho_0 }{P_c}\biggr) \xi \biggr] \frac{1}{\xi} \frac{dx}{d\xi}  
\frac{d^2x}{d\xi^2} + \frac{4}{\xi} \cdot \frac{dx}{d\xi} \biggr]
- \frac{2g^3}{q^3} \biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl[1 +\frac{\rho_e}{\rho_c}  \biggl( \xi^3 - 1\biggr) \biggr] \frac{1}{\xi^2} \cdot \frac{dx}{d\xi}  
</math>
</math>
   </td>
   </td>
Line 585: Line 656:
   <td align="left">
   <td align="left">
<math>~
<math>~
+ \frac{3}{2\pi} \biggl(\frac{\rho_e}{ \rho_c} \biggr) \frac{1}{G\rho_c}\biggl\{ \frac{\omega^2}{\gamma_\mathrm{g} }  
+ 2\biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl\{  
+ \biggl(\frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)\biggl(\frac{4\pi G\rho_c}{3}\biggr)\frac{1}{\xi^3}\biggl[1 + \frac{\rho_e}{\rho_c}(\xi^3-1)\biggr] \biggr\} x  
\frac{3\omega^2 }{4\pi G\rho_c \gamma_\mathrm{g}}
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr)  
\biggl[ \frac{1}{\xi^3} + \frac{\rho_e}{\rho_c}\biggl(1-\frac{1}{\xi^3}\biggr) \biggr]  
\biggr\} x  
</math>
</math>
   </td>
   </td>

Revision as of 04:53, 24 November 2016

Radial Oscillations of a Zero-Zero Bipolytrope

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Groundwork

In an accompanying discussion, we derived the so-called,

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>

whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. According to our accompanying derivation, if the initial, unperturbed equilibrium configuration is an <math>~(n_c, n_e) = (0,0)</math> bipolytrope, then we know that the relevant functional profiles are as follows for the core and envelope, separately. Note that, throughout, we will preferentially adopt as the dimensionless radial coordinate, the parameter,

<math>~\xi</math>

<math>~\equiv</math>

<math>~\frac{r}{r_i} \, ,</math>

in which case,

<math>~\chi</math>

<math>~=</math>

<math>~ \chi_i \xi = q \biggl( \frac{G\rho_c^2 R^2}{P_c} \biggr)^{1 /2 }\xi \, .</math>

The corresponding radial coordinate range is,

<math>~0 \le \xi \le 1 </math>      for the core, and

<math>~1 \le \xi \le \frac{1}{q} </math>      for the envelope.

Core

<math>~r_0</math>

<math>~=</math>

<math>~\biggl( \frac{P_c}{G\rho_c^2}\biggr)^{1 / 2} \chi = (qR) \xi \, ,</math>

<math>~\rho_0</math>

<math>~=</math>

<math>~\rho_c \, ,</math>

<math>~\frac{P_0}{P_c}</math>

<math>~=</math>

<math>~1 - \frac{2\pi}{3} \chi^2 = 1 - \frac{2\pi}{3} \biggl[ \frac{G\rho_c^2 R^2}{P_c} \biggr] q^2 \xi^2 = 1 - \frac{\xi^2}{g^2} \, ,</math>

<math>~M_r</math>

<math>~=</math>

<math>~\frac{4\pi}{3} \biggl( \frac{P_c^3}{G^3 \rho_c^4} \biggr)^{1 / 2}\chi^3 = \frac{4\pi}{3} \biggl( \frac{P_c^3}{G^3 \rho_c^4} \biggr)^{1 / 2} \biggl( \frac{G\rho_c^2 R^2}{P_c} \biggr)^{3 /2 } (q\xi)^3 </math>

 

<math>~=</math>

<math>~ \frac{4\pi}{3} ( \rho_c R^3 ) (q\xi)^3 = \frac{4\pi}{3} (q\xi)^3 \rho_c \biggl[ \biggl( \frac{P_c}{G\rho_c^2} \biggr)^{1 / 2} \biggl( \frac{3}{2\pi} \biggr)^{1 / 2} \frac{1}{qg}\biggr]^3

</math>

 

<math>~=</math>

<math>~ \frac{4\pi}{3} (q\xi)^3 \biggl[ \biggl( \frac{P_c^3}{G^3\rho_c^4} \biggr)^{1 / 2} \biggl( \frac{3}{2\pi} \biggr)^{3 / 2} \frac{1}{q^3g^3}\biggr] = \frac{4\pi}{3} \biggl[ \biggl(\frac{\pi}{6}\biggr)^{1 / 2} \nu g^3 M_\mathrm{tot} \biggl( \frac{3}{2\pi} \biggr)^{3 / 2} \frac{1}{g^3}\biggr]\xi^3 </math>

 

<math>~=</math>

<math>~ M_\mathrm{tot} \nu \xi^3 \, , </math>

where,

<math>~g^2(\nu,q)</math>

<math>~\equiv</math>

<math> \biggl\{ 1 + \biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( 1-q \biggr) + \frac{\rho_e}{\rho_c} \biggl(\frac{1}{q^2} - 1\biggr) \biggr] \biggr\} \, , </math>

<math>~\frac{\rho_e}{\rho_c}</math>

<math>~=</math>

<math> \frac{q^3}{\nu} \biggl( \frac{1-\nu}{1-q^3}\biggr) \, . </math>

Hence,

<math>~g_0</math>

<math>~=</math>

<math>~\frac{G(M_\mathrm{tot} \nu \xi^3)}{(qR\xi)^2} = \biggl( \frac{GM_\mathrm{tot} }{R^2 } \biggr) \frac{\nu \xi}{q^2} </math>

 

<math>~=</math>

<math>~ G \biggl[\biggl( \frac{P_c^3}{G^3\rho_c^4} \biggr)^{1 / 2} \biggl(\frac{6}{\pi}\biggr)^{1 / 2} \frac{1}{\nu g^3} \biggr] \biggl[\biggl(\frac{G\rho_c^2}{P_c} \biggr)^{ 1 / 2} \biggl(\frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr]^2 \frac{\nu \xi}{q^2} </math>

 

<math>~=</math>

<math>~ (P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} </math>

<math>~\frac{\rho_0}{P_0}</math>

<math>~=</math>

<math>~ \frac{\rho_c}{P_c} \biggl[ 1 - \frac{\xi^2}{g^2} \biggr]^{-1} = \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \, ;</math>

and the wave equation for the core becomes,

<math>~0</math>

<math>~=</math>

<math>~ \frac{1}{(qR)^2} \cdot \frac{d^2x}{d\xi^2} + \biggl[\frac{4qR}{r_0} - \biggl(\frac{qR g_0 \rho_0}{P_0}\biggr) \biggr] \frac{1}{(qR)^2} \cdot \frac{dx}{d\xi} + \biggl(\frac{\rho_0}{P_0} \biggr)\biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)\frac{g_0}{r_0} \biggr] x </math>

 

<math>~=</math>

<math>~ \frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - q\biggl(\frac{P_c}{G\rho_c^2} \biggr)^{1 / 2}\biggl(\frac{3}{2\pi}\biggr)^{1 / 2} \frac{1}{qg} (P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggr] \frac{dx}{d\xi} \biggr\} </math>

 

 

<math>~ + \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} \cdot \frac{1}{qR\xi}\biggr] x </math>

 

<math>~=</math>

<math>~ \frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - \biggl( \frac{2\xi}{g^2 - \xi^2} \biggr) \biggr] \frac{dx}{d\xi} \biggr\} </math>

 

 

<math>~ + \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{1}{qg} \biggl(\frac{G\rho_c^2}{P_c} \biggr)^{1 / 2} \biggl( \frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr] x </math>

 

<math>~=</math>

<math>~ \frac{1}{(qR)^2(g^2 - \xi^2)} \biggl\{ (g^2 - \xi^2)\frac{d^2x}{d\xi^2} + ( 4g^2 - 6\xi^2 ) \frac{1}{\xi} \cdot \frac{dx}{d\xi} + \frac{q^2 g^2 R^2 \rho_c}{P_c} \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr) \frac{4\pi G\rho_c}{3} \biggr] x \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{1}{(qR)^2(g^2 - \xi^2)} \biggl\{ (g^2 - \xi^2)\frac{d^2x}{d\xi^2} + ( 4g^2 - 6\xi^2 ) \frac{1}{\xi} \cdot \frac{dx}{d\xi} + 2\biggl[ \frac{3\omega^2}{\gamma_\mathrm{g}4\pi G\rho_c} + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr) \biggr] x \biggr\} \, . </math>

Envelope

<math>~r_0</math>

<math>~=</math>

<math>~ (qR) \xi \, ,</math>

<math>~\rho_0</math>

<math>~=</math>

<math>~\rho_e \, ,</math>

<math>~\frac{P_0}{P_c}</math>

<math>~=</math>

<math> 1 - \frac{2\pi}{3}\chi_i^2 + \frac{2\pi}{3} \biggl(\frac{\rho_e}{\rho_c}\biggr) \chi_i^2 \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{1}{\xi} - 1\biggr) - \frac{\rho_e}{\rho_c} (\xi^2 - 1) \biggr] </math>

 

<math>~=</math>

<math> 1 - \frac{1}{g^2}\biggl\{ 1 - \biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{1}{\xi} - 1\biggr) - \frac{\rho_e}{\rho_c} (\xi^2 - 1) \biggr] \biggr\} </math>

<math>~\Rightarrow ~~~ \frac{g^2 P_0}{P_c}</math>

<math>~=</math>

<math> g^2 - 1 + \biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{1}{\xi} - 1\biggr) - \frac{\rho_e}{\rho_c} (\xi^2 - 1) \biggr] \, , </math>

<math>~M_r</math>

  <math>~=</math> 

<math>\frac{4\pi}{3} \biggl[ \frac{P_c^3}{G^3 \rho_c^4} \biggr]^{1/2} \chi_i^3\biggl[1 +\frac{\rho_e}{\rho_c} \biggl( \xi^3 - 1\biggr) \biggr]</math>

 

  <math>~=</math> 

<math>M_\mathrm{tot} \frac{4\pi}{3} \biggl[\biggl( \frac{\pi}{6}\biggr)^{1 / 2}\nu g^3 \biggr] \biggl[ \biggr(\frac{3}{2\pi}\biggr)\frac{1}{g^2} \biggr]^{3 /2} \biggl[1 +\frac{\rho_e}{\rho_c} \biggl( \xi^3 - 1\biggr) \biggr] </math>

 

  <math>~=</math> 

<math> \nu M_\mathrm{tot} \biggl[1 +\frac{\rho_e}{\rho_c} \biggl( \xi^3 - 1\biggr) \biggr] \, . </math>

Hence,

<math>~g_0</math>

<math>~=</math>

<math>~ \frac{G M_\mathrm{tot}\nu }{ R^2 q^2\xi^2} \biggl[1 +\frac{\rho_e}{\rho_c} \biggl( \xi^3 - 1\biggr) \biggr] \, , </math>

and, after multiplying through by <math>~(q^2 R^2 g^2P_0/P_c)</math>, the wave equation for the envelope becomes,

<math>~0</math>

<math>~=</math>

<math>~\frac{q^2 g^2 R^2 P_0}{P_c} \biggl\{ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} \biggr\} + \frac{q^2 g^2 R^2 \rho_0}{P_c} \biggl[ \frac{\omega^2 }{\gamma_\mathrm{g}} + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr)\frac{g_0}{r_0} \biggr] x </math>

 

<math>~=</math>

<math>~\frac{g^2 P_0}{P_c} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[4 - \biggl(\frac{qRg_0 \rho_e}{P_0}\biggr) \xi\biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} \biggr\} + \frac{q^2 g^2 R^2 \rho_e}{P_c} \biggl[ \frac{\omega^2 }{\gamma_\mathrm{g}} + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr)\frac{g_0}{r_0} \biggr] x </math>

 

<math>~=</math>

<math>~ \frac{g^2 P_0}{P_c} \biggl[ \frac{d^2x}{d\xi^2} + \frac{4}{\xi} \cdot \frac{dx}{d\xi} \biggr] - \biggl(\frac{qg^2Rg_0 \rho_e}{P_c}\biggr) \frac{dx}{d\xi} </math>

 

 

<math>~ + 2\biggl(\frac{\rho_e}{\rho_c}\biggr) \frac{3}{4\pi G \rho_c} \biggl\{ \frac{\omega^2 }{\gamma_\mathrm{g}} + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr)\biggl(\frac{4\pi G \rho_c}{3}\biggr) \biggl[ \frac{1}{\xi^3} + \frac{\rho_e}{\rho_c}\biggl(1-\frac{1}{\xi^3}\biggr) \biggr] \biggr\} x </math>

 

<math>~=</math>

<math>~ \frac{g^2 P_0}{P_c} \biggl[ \frac{d^2x}{d\xi^2} + \frac{4}{\xi} \cdot \frac{dx}{d\xi} \biggr] - \frac{2g^3}{q^3} \biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl[1 +\frac{\rho_e}{\rho_c} \biggl( \xi^3 - 1\biggr) \biggr] \frac{1}{\xi^2} \cdot \frac{dx}{d\xi} </math>

 

 

<math>~ + 2\biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl\{ \frac{3\omega^2 }{4\pi G\rho_c \gamma_\mathrm{g}} + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g}} \biggr) \biggl[ \frac{1}{\xi^3} + \frac{\rho_e}{\rho_c}\biggl(1-\frac{1}{\xi^3}\biggr) \biggr] \biggr\} x </math>

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation