Difference between revisions of "User:Tohline/Appendix/Ramblings/SphericalWaveEquation"
(→Assembling the Key Relations: Finished deriving W-based eigenvalue problem) |
(→Second Effort: Just playing around with 2nd-order ODE, trying to simplify) |
||
Line 287: | Line 287: | ||
===Second Effort=== | ===Second Effort=== | ||
====Direct Approach==== | |||
Let's switch from the perturbation variable, <math>~p</math>, to an enthalpy-related variable, | Let's switch from the perturbation variable, <math>~p</math>, to an enthalpy-related variable, | ||
<div align="center"> | <div align="center"> | ||
Line 307: | Line 308: | ||
<div align="center"> | <div align="center"> | ||
<math>~{\bar\sigma}^2 \equiv \frac{4g_0}{r_0} + \omega^2 \, .</math> | <math>~{\bar\sigma}^2 \equiv \frac{4g_0}{r_0} + \omega^2 \, .</math> | ||
</div> | |||
Note, as well, that, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~g_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{1}{\rho_0} \cdot \frac{dP_0}{dr_0}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~ {\bar\sigma}^2 </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\omega^2 | |||
-\frac{4}{\rho_0 r_0} \cdot \frac{dP_0}{dr_0} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\omega^2 | |||
-\frac{4P_0}{\rho_0 r_0^2} \cdot \frac{d\ln P_0}{d\ln r_0} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~ \frac{\rho_0 {\bar\sigma}^2 r_0^2}{P_0} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\rho_0 r_0^2}{P_0} \cdot\omega^2- 4\frac{d\ln P_0}{d\ln r_0} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
Line 512: | Line 573: | ||
+ \frac{2}{r_0}\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] + \biggl(\frac{\rho_0 {\bar\sigma}^2}{\gamma_gP_0} \biggr)\biggr\} \, . | + \frac{2}{r_0}\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] + \biggl(\frac{\rho_0 {\bar\sigma}^2}{\gamma_gP_0} \biggr)\biggr\} \, . | ||
</math> | </math> | ||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
====Playing Around==== | |||
Multiply thru by <math>~r_0^2</math>: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ 0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
r_0^2 \cdot \frac{d^2W}{dr_0^2} | |||
+ r_0 \cdot \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} +2 \biggr] | |||
+ W \biggl\{ r_0^2 \cdot \frac{d^2 \ln(\rho_0 {\bar\sigma}^2)}{dr_0^2} | |||
+ 2\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] + \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Now, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[r_0 \cdot \frac{d\ln (\rho_0 {\bar\sigma}^2)}{dr_0} \biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} | |||
+ r_0^2 \cdot \frac{d^2\ln (\rho_0 {\bar\sigma}^2)}{dr_0^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~ | |||
r_0^2 \cdot \frac{d^2\ln (\rho_0 {\bar\sigma}^2)}{dr_0^2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
r_0 \cdot \frac{d}{dr_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] | |||
- \frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<!-- | |||
SECOND | |||
--> | |||
Also, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[\frac{dW}{d\ln r_0} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[r_0 \cdot \frac{dW}{dr_0} \biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{dW}{d\ln r_0} | |||
+ r_0^2 \cdot \frac{d^2W}{dr_0^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~ | |||
r_0^2 \cdot \frac{d^2W}{dr_0^2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] - \frac{dW}{d\ln r_0} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \Rightarrow ~~~~ 0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] - \frac{dW}{d\ln r_0} | |||
+ r_0 \cdot \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} +2 \biggr] | |||
+ W \biggl\{ r_0 \cdot \frac{d}{dr_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] | |||
+ \frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} | |||
+ \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] | |||
+ \frac{dW}{d\ln r_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} +1 \biggr] | |||
+ W \biggl\{ \frac{d}{d\ln r_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] | |||
+ \frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} | |||
+ \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] | |||
+ \frac{dW}{d\ln r_0} \biggl[ u +1 \biggr] | |||
+ W \biggl\{ \frac{du}{d\ln r_0} | |||
+ u | |||
+ \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~u</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Let, | |||
<div align="center"> | |||
<math>~y \equiv \ln r_0 </math> | |||
<math>~\Rightarrow</math> | |||
<math>~r_0 = e^{y} \, . </math> | |||
</div> | |||
Then we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2W}{dy^2} | |||
+ \frac{dW}{dy} \biggl[ u +1 \biggr] | |||
+ W \biggl\{ \frac{du}{dy} | |||
+ u | |||
+ \biggl(\frac{\rho_0 {\bar\sigma}^2 e^{2y} }{\gamma_gP_0} \biggr)\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2W}{dy^2} + \frac{dW}{dy} \biggl[ u +1 \biggr] + W \biggl\{ \frac{du}{dy} + u | |||
+ \biggl[\frac{\rho_0 r_0^2}{P_0} \cdot\omega^2- 4\frac{d\ln P_0}{d\ln r_0} \biggr] \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2W}{dy^2} + \frac{dW}{dy} \biggl[ u +1 \biggr] + W \biggl\{ \frac{d(u- P_0^4)}{dy} + u | |||
+ \frac{\rho_0 r_0^2}{P_0} \cdot\omega^2\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Therefore, it must also be the case that, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~u dy</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~d \ln(\rho_0 {\bar\sigma}^2) \, .</math> | |||
</td> | </td> | ||
</tr> | </tr> |
Latest revision as of 03:58, 23 May 2016
Playing With Spherical Wave Equation
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
The traditional presentation of the (spherically symmetric) adiabatic wave equation focuses on fractional radial displacements, <math>~x \equiv \delta r/r_0</math>, of spherical mass shells. After studying in depth various stability analyses of Papaloizou-Pringle tori, I have begun to wonder whether the wave equation for spherical polytropes might look simpler if we focus, instead, on fluctuations in the fluid entropy.
Assembling the Key Relations
In the traditional approach, the following three linearized equations describe the physical relationship between the three dimensionless perturbation amplitudes <math>~p(r_0) \equiv P_1/P_0</math>, <math>~d(r_0) \equiv \rho_1/\rho_0</math> and <math>~x(r_0) \equiv r_1/r_0</math>, for various characteristic eigenfrequencies, <math>~\omega</math>:
Linearized Linearized Linearized |
First Effort
Let's switch from the perturbation variable, <math>~p</math>, to an enthalpy-related variable,
<math>~W</math> |
<math>~\equiv</math> |
<math>~\frac{P_1}{\rho_0} = \biggl(\frac{P_0}{\rho_0}\biggr) p \, .</math> |
The second expression then becomes,
<math>~x(4g_0 + \omega^2 r_0)</math> |
<math>~=</math> |
<math>~\frac{P_0}{\rho_0} \frac{d}{dr_0}\biggl(\frac{W\rho_0}{P_0}\biggr) - \biggl(\frac{g_0 \rho_0}{P_0}\biggr)W</math> |
|
<math>~=</math> |
<math>~\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} - \frac{W }{P_0} \frac{dP_0}{dr_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr)W</math> |
|
<math>~=</math> |
<math>~\frac{dW}{dr_0}+ \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \, . </math> |
Taking the derivative of this expression with respect to <math>~r_0</math> gives,
<math>~\frac{dx}{dr_0}</math> |
<math>~=</math> |
<math>~\frac{d}{dr_0}\biggl\{ (4g_0 + \omega^2 r_0)^{-1}\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)^{-1}\frac{d}{dr_0} \biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] +\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr]\frac{d}{dr_0} (4g_0 + \omega^2 r_0)^{-1} </math> |
|
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)^{-1} \biggl\{ \frac{d^2W}{dr^2_0} + \frac{d}{dr_0}\biggl[\frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} -(4g_0 + \omega^2 r_0)^{-2}\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggl\{ 4\frac{dg_0}{dr_0} + \omega^2 \biggr\} </math> |
<math>~\Rightarrow~~~~ (4g_0 + \omega^2 r_0)^{2} \biggl[ \frac{dx}{dr_0} \biggr] </math> |
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)\biggl\{ \frac{d^2W}{dr^2_0} + \frac{d}{dr_0}\biggl[\frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} -\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggl\{ 4\frac{dg_0}{dr_0} + \omega^2 \biggr\} \, . </math> |
Hence, the linearized equation of continuity becomes,
<math>~- (4g_0 + \omega^2 r_0)^{2}\biggl(\frac{W\rho_0}{\gamma_g r_0P_0}\biggr) </math> |
<math>~=</math> |
<math>~(4g_0 + \omega^2 r_0)^{2} \biggl[ \frac{dx}{dr_0} \biggr] +\frac{3 (4g_0 + \omega^2 r_0)}{r_0} \biggl[ (4g_0 + \omega^2 r_0)x \biggr] </math> |
|
<math>~=</math> |
<math>~ (4g_0 + \omega^2 r_0)\biggl\{ \frac{d^2W}{dr^2_0} + \frac{d}{dr_0}\biggl[\frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggr\} -\biggl[\frac{dW}{dr_0} + \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] \biggl\{ 4\frac{dg_0}{dr_0} + \omega^2 \biggr\} </math> |
|
|
<math>~ +\frac{3 (4g_0 + \omega^2 r_0)}{r_0} \biggl[ \frac{dW}{dr_0}+ \frac{W}{\rho_0} \frac{d\rho_0}{dr_0} \biggr] </math> |
Second Effort
Direct Approach
Let's switch from the perturbation variable, <math>~p</math>, to an enthalpy-related variable,
<math>~W</math> |
<math>~\equiv</math> |
<math>~\frac{P_1}{\rho_0 {\bar\sigma}^2} = \biggl(\frac{P_0}{\rho_0 {\bar\sigma}^2}\biggr) p \, ,</math> |
where,
<math>~{\bar\sigma}^2 \equiv \frac{4g_0}{r_0} + \omega^2 \, .</math>
Note, as well, that,
<math>~g_0</math> |
<math>~=</math> |
<math>~- \frac{1}{\rho_0} \cdot \frac{dP_0}{dr_0}</math> |
<math>~\Rightarrow ~~~~ {\bar\sigma}^2 </math> |
<math>~=</math> |
<math>~\omega^2 -\frac{4}{\rho_0 r_0} \cdot \frac{dP_0}{dr_0} </math> |
|
<math>~=</math> |
<math>~\omega^2 -\frac{4P_0}{\rho_0 r_0^2} \cdot \frac{d\ln P_0}{d\ln r_0} </math> |
<math>~\Rightarrow ~~~~ \frac{\rho_0 {\bar\sigma}^2 r_0^2}{P_0} </math> |
<math>~=</math> |
<math>~ \frac{\rho_0 r_0^2}{P_0} \cdot\omega^2- 4\frac{d\ln P_0}{d\ln r_0} </math> |
The second expression then becomes,
<math>~xr_0{\bar\sigma}^2</math> |
<math>~=</math> |
<math>~\frac{P_0}{\rho_0} \frac{d}{dr_0}\biggl(\frac{W\rho_0 {\bar\sigma}^2}{P_0}\biggr) - \biggl(\frac{g_0 \rho_0 {\bar\sigma}^2}{P_0}\biggr)W</math> |
|
<math>~=</math> |
<math>~ {\bar\sigma}^2 \cdot \frac{dW}{dr_0} + W \biggl[ \frac{P_0}{\rho_0} \frac{d}{dr_0}\biggl(\frac{\rho_0 {\bar\sigma}^2}{P_0}\biggr) - \biggl(\frac{g_0 \rho_0 {\bar\sigma}^2}{P_0}\biggr)\biggr] </math> |
<math>~\Rightarrow ~~~~ xr_0</math> |
<math>~=</math> |
<math>~ \frac{dW}{dr_0} + \frac{W}{\rho_0{\bar\sigma}^2} \biggl[ P_0 \frac{d}{dr_0}\biggl(\frac{\rho_0 {\bar\sigma}^2}{P_0}\biggr) + \biggl(\frac{\rho_0 {\bar\sigma}^2}{P_0}\biggr)\frac{dP_0}{dr_0} \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{dW}{dr_0} + W \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] \, . </math> |
Taking the derivative of this expression with respect to <math>~r_0</math> gives,
<math>~\frac{dx}{dr_0}</math> |
<math>~=</math> |
<math>~ \frac{d}{dr_0}\biggl\{\frac{1}{r_0}\biggl[ \frac{dW}{dr_0} + W \cdot \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] \biggr\} </math> |
<math>~\Rightarrow~~~~r_0 \frac{dx}{dr_0}</math> |
<math>~=</math> |
<math>~ \frac{d}{dr_0}\biggl[ \frac{dW}{dr_0} + W \cdot \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] - \frac{1}{r_0}\biggl[ \frac{dW}{dr_0} + W \cdot \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{d^2W}{dr_0^2} + \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} -\frac{1}{r_0}\biggr] + W \biggl\{ \frac{d^2 \ln(\rho_0 {\bar\sigma}^2)}{dr_0^2} - \frac{1}{r_0}\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr]\biggr\} \, . </math> |
Hence, the linearized continuity equation gives,
<math>~- \biggl(\frac{W\rho_0 {\bar\sigma}^2}{\gamma_gP_0} \biggr)</math> |
<math>~=</math> |
<math>~r_0 \frac{dx}{dr_0} +3x</math> |
|
<math>~=</math> |
<math>~ \frac{d^2W}{dr_0^2} + \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} -\frac{1}{r_0}\biggr] + W \biggl\{ \frac{d^2 \ln(\rho_0 {\bar\sigma}^2)}{dr_0^2} - \frac{1}{r_0}\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr]\biggr\} </math> |
|
|
<math>~ +\frac{3}{r_0}\biggl[ \frac{dW}{dr_0} + W \cdot\frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{d^2W}{dr_0^2} + \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} +\frac{2}{r_0}\biggr] + W \biggl\{ \frac{d^2 \ln(\rho_0 {\bar\sigma}^2)}{dr_0^2} + \frac{2}{r_0}\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr]\biggr\} </math> |
<math>~\Rightarrow~~~~ 0</math> |
<math>~=</math> |
<math>~ \frac{d^2W}{dr_0^2} + \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} +\frac{2}{r_0}\biggr] + W \biggl\{ \frac{d^2 \ln(\rho_0 {\bar\sigma}^2)}{dr_0^2} + \frac{2}{r_0}\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{dr_0} \biggr] + \biggl(\frac{\rho_0 {\bar\sigma}^2}{\gamma_gP_0} \biggr)\biggr\} \, . </math> |
Playing Around
Multiply thru by <math>~r_0^2</math>:
<math>~ 0</math> |
<math>~=</math> |
<math>~ r_0^2 \cdot \frac{d^2W}{dr_0^2} + r_0 \cdot \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} +2 \biggr] + W \biggl\{ r_0^2 \cdot \frac{d^2 \ln(\rho_0 {\bar\sigma}^2)}{dr_0^2} + 2\biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] + \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} </math> |
Now,
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr]</math> |
<math>~=</math> |
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[r_0 \cdot \frac{d\ln (\rho_0 {\bar\sigma}^2)}{dr_0} \biggr]</math> |
|
<math>~=</math> |
<math>~ \frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} + r_0^2 \cdot \frac{d^2\ln (\rho_0 {\bar\sigma}^2)}{dr_0^2} </math> |
<math>~\Rightarrow ~~~~ r_0^2 \cdot \frac{d^2\ln (\rho_0 {\bar\sigma}^2)}{dr_0^2} </math> |
<math>~=</math> |
<math>~ r_0 \cdot \frac{d}{dr_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] - \frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} </math> |
Also,
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[\frac{dW}{d\ln r_0} \biggr]</math> |
<math>~=</math> |
<math>~r_0 \cdot \frac{d}{dr_0} \biggl[r_0 \cdot \frac{dW}{dr_0} \biggr]</math> |
|
<math>~=</math> |
<math>~ \frac{dW}{d\ln r_0} + r_0^2 \cdot \frac{d^2W}{dr_0^2} </math> |
<math>~\Rightarrow ~~~~ r_0^2 \cdot \frac{d^2W}{dr_0^2} </math> |
<math>~=</math> |
<math>~ \frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] - \frac{dW}{d\ln r_0} </math> |
<math>~ \Rightarrow ~~~~ 0</math> |
<math>~=</math> |
<math>~ \frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] - \frac{dW}{d\ln r_0} + r_0 \cdot \frac{dW}{dr_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} +2 \biggr] + W \biggl\{ r_0 \cdot \frac{d}{dr_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] + \frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} + \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] + \frac{dW}{d\ln r_0} \biggl[ \frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} +1 \biggr] + W \biggl\{ \frac{d}{d\ln r_0} \biggl[\frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} \biggr] + \frac{d\ln (\rho_0 {\bar\sigma}^2)}{d\ln r_0} + \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{d}{d\ln r_0} \biggl[\frac{dW}{d\ln r_0} \biggr] + \frac{dW}{d\ln r_0} \biggl[ u +1 \biggr] + W \biggl\{ \frac{du}{d\ln r_0} + u + \biggl(\frac{\rho_0 {\bar\sigma}^2 r_0^2 }{\gamma_gP_0} \biggr)\biggr\} \, , </math> |
where,
<math>~u</math> |
<math>~\equiv</math> |
<math>~\frac{d \ln(\rho_0 {\bar\sigma}^2)}{d\ln r_0} \, .</math> |
Let,
<math>~y \equiv \ln r_0 </math> <math>~\Rightarrow</math> <math>~r_0 = e^{y} \, . </math>
Then we have,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2W}{dy^2} + \frac{dW}{dy} \biggl[ u +1 \biggr] + W \biggl\{ \frac{du}{dy} + u + \biggl(\frac{\rho_0 {\bar\sigma}^2 e^{2y} }{\gamma_gP_0} \biggr)\biggr\} \, . </math> |
|
<math>~=</math> |
<math>~ \frac{d^2W}{dy^2} + \frac{dW}{dy} \biggl[ u +1 \biggr] + W \biggl\{ \frac{du}{dy} + u + \biggl[\frac{\rho_0 r_0^2}{P_0} \cdot\omega^2- 4\frac{d\ln P_0}{d\ln r_0} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{d^2W}{dy^2} + \frac{dW}{dy} \biggl[ u +1 \biggr] + W \biggl\{ \frac{d(u- P_0^4)}{dy} + u + \frac{\rho_0 r_0^2}{P_0} \cdot\omega^2\biggr\} </math> |
Therefore, it must also be the case that,
<math>~u dy</math> |
<math>~=</math> |
<math>~d \ln(\rho_0 {\bar\sigma}^2) \, .</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |