Difference between revisions of "User:Tohline/Apps/Blaes85SlimLimit"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Statement of the Eigenvalue Problem: Attempting to derive Blaes85 equation (3.9))
Line 171: Line 171:
<math>~(1-\eta^2)
<math>~(1-\eta^2)
\biggl[ \eta^{2} \frac{d^2\Upsilon}{d\eta^2} + (2|k|+1)\eta \frac{d\Upsilon}{d\eta} \biggr]
\biggl[ \eta^{2} \frac{d^2\Upsilon}{d\eta^2} + (2|k|+1)\eta \frac{d\Upsilon}{d\eta} \biggr]
- \biggl[ 2 n \eta^3  \frac{d\Upsilon}{d\eta} \biggr]  
- \biggl[ 2 n \eta^3  \frac{d\Upsilon}{d\eta} \biggr] \, .
</math>
  </td>
</tr>
</table>
</div>
 
{{LSU_WorkInProgress}}
 
 
Finally, then, making the independent variable substitution,
<div align="center">
<math>~\eta^2 ~\rightarrow ~ y</math> &nbsp; &nbsp; &nbsp;
<math>~\Rightarrow</math> &nbsp; &nbsp; &nbsp;
<math>~dy = 2\eta d\eta</math> &nbsp; &nbsp; &nbsp;
<math>~\Rightarrow</math> &nbsp; &nbsp; &nbsp;
<math> ~~ </math>&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp;
<math>\frac{d^2}{d\eta^2} ~\rightarrow~ 2y^{1/2}\frac{d}{dy}</math>
</div>
in which case,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{d}{d\eta}</math>
  </td>
  <td align="center">
<math>~\rightarrow</math>
  </td>
  <td align="left">
<math>~2y^{1/2}\frac{d}{dy}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{d^2}{d\eta^2}</math>
  </td>
  <td align="center">
<math>~\rightarrow</math>
  </td>
  <td align="left">
<math>~4y^{1/2}\frac{d}{dy} + 4y^{3/2}\frac{d^2}{dy^2}</math>
  </td>
</tr>
</table>
</div>
and,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~
- 2ny \biggl[\biggl( \frac{\sigma}{\Omega_0} + m  \biggr)^2 -|k|\biggr]  \Upsilon
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(1-y)y \biggl[ 4y^{1/2}\frac{d\Upsilon}{dy} + 4y^{3/2}\frac{d^2\Upsilon}{dy^2}\biggr] + 2(2|k|+1)(1-y)y \frac{d\Upsilon}{dy}
- \biggl[ 4 n y^{2}  \frac{d\Upsilon}{dy} \biggr]  
</math>
</math>
   </td>
   </td>

Revision as of 23:47, 3 May 2016


Stability of PP Tori in the Slim Torus Limit

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Statement of the Eigenvalue Problem

Here, we build on our discussion in an accompanying chapter in which five published analyses of nonaxisymmetric instabilities in Papaloizou-Pringle tori were reviewed: The discovery paper, PP84, and papers by four separate groups that were published within a couple of years of the discovery paper — Papaloizou & Pringle (1985), Blaes (1985), Kojima (1986), and Goldreich, Goodman & Narayan (1986). Following the lead of Blaes (1985; hereafter Blaes85), in particular, we have shown that the relevant eigenvalue problem is defined by the following 2nd-order PDE,

<math>~0</math>

<math>~=</math>

<math>~ \eta^2 (1-\eta^2)\cdot \frac{\partial^2(\delta W)^{(0)}}{\partial \eta^2} + (1-\eta^2) \cdot \frac{\partial^2(\delta W)^{(0)}}{\partial\theta^2} + \biggl[ \eta (1-\eta^2) -2 n \eta^3 \biggr] \cdot \frac{\partial (\delta W)^{(0)}}{\partial \eta} + 2n\eta^2 \biggl( \frac{\sigma}{\Omega_0} + m \biggr)^2 (\delta W)^{(0)} \, , </math>

where, <math>~\delta W^{(0)}</math> is the dimensionless enthalpy perturbation. Making the substitution,

<math>~\delta W^{(0)} ~\rightarrow~ V(\eta) \exp (ik\theta) \, ,</math>

this governing equation — now, a one-dimensional, 2nd-order ODE — becomes,

<math>~0</math>

<math>~=</math>

<math>~ \eta^2 (1-\eta^2)\cdot \frac{d^2V}{d \eta^2} - k^2(1-\eta^2) V + \biggl[ \eta (1-\eta^2) -2 n \eta^3 \biggr] \cdot \frac{d V}{d \eta} + 2n\eta^2 \biggl( \frac{\sigma}{\Omega_0} + m \biggr)^2 V \, . </math>

Making the additional substitution,

<math>~V ~\rightarrow~ \eta^{|k|} \Upsilon(\eta) \, ,</math>

and appreciating that,

<math>~\frac{dV}{d\eta}</math>

<math>~=</math>

<math>~|k|\eta^{|k|-1} \Upsilon + \eta^{|k|} \frac{d\Upsilon}{d\eta} \, ,</math>

<math>~\frac{d^2V}{d\eta^2}</math>

<math>~=</math>

<math>~ |k|[|k|-1] \eta^{|k|-2}\Upsilon + 2|k|\eta^{|k|-1} \frac{d\Upsilon}{d\eta} + \eta^{|k|} \frac{d^2\Upsilon}{d\eta^2}\, ,</math>

the governing ODE becomes,

<math>~ \biggl\{k^2(1-\eta^2) - 2n\eta^2 \biggl( \frac{\sigma}{\Omega_0} + m \biggr)^2\biggr\} \eta^{|k|}\Upsilon </math>

<math>~=</math>

<math>~ \eta^2 (1-\eta^2)\cdot \biggl[ |k|[|k|-1] \eta^{|k|-2}\Upsilon + 2|k|\eta^{|k|-1} \frac{d\Upsilon}{d\eta} + \eta^{|k|} \frac{d^2\Upsilon}{d\eta^2}

\biggr]

+ \biggl[ \eta (1-\eta^2) -2 n \eta^3 \biggr] \cdot \biggl[ |k|\eta^{|k|-1} \Upsilon + \eta^{|k|} \frac{d\Upsilon}{d\eta} \biggr] </math>

 

<math>~=</math>

<math>~(1-\eta^2) \biggl[ |k|[|k|-1] \eta^{|k|}\Upsilon + 2|k|\eta^{|k|+1} \frac{d\Upsilon}{d\eta} + \eta^{|k|+2} \frac{d^2\Upsilon}{d\eta^2}\biggr] + \biggl[ (1-\eta^2) -2 n \eta^2 \biggr] \cdot \biggl[ |k|\eta^{|k|} \Upsilon + \eta^{|k|+1} \frac{d\Upsilon}{d\eta} \biggr] </math>

 

<math>~=</math>

<math>~\eta^{|k|}(1-\eta^2) \biggl[ k^2 \Upsilon + (2|k|+1)\eta \frac{d\Upsilon}{d\eta} + \eta^{2} \frac{d^2\Upsilon}{d\eta^2} \biggr] - \eta^{|k|}\biggl[ 2 n \eta^2 \biggr] \cdot \biggl[ |k| \Upsilon + \eta \frac{d\Upsilon}{d\eta} \biggr] </math>

<math>~\Rightarrow~~~ - 2n\eta^2 \biggl[\biggl( \frac{\sigma}{\Omega_0} + m \biggr)^2 -|k|\biggr] \Upsilon </math>

<math>~=</math>

<math>~(1-\eta^2) \biggl[ \eta^{2} \frac{d^2\Upsilon}{d\eta^2} + (2|k|+1)\eta \frac{d\Upsilon}{d\eta} \biggr] - \biggl[ 2 n \eta^3 \frac{d\Upsilon}{d\eta} \biggr] \, . </math>


Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |



Finally, then, making the independent variable substitution,

<math>~\eta^2 ~\rightarrow ~ y</math>       <math>~\Rightarrow</math>       <math>~dy = 2\eta d\eta</math>       <math>~\Rightarrow</math>       <math> ~~ </math>      and       <math>\frac{d^2}{d\eta^2} ~\rightarrow~ 2y^{1/2}\frac{d}{dy}</math>

in which case,

<math>~\frac{d}{d\eta}</math>

<math>~\rightarrow</math>

<math>~2y^{1/2}\frac{d}{dy}</math>

<math>~\frac{d^2}{d\eta^2}</math>

<math>~\rightarrow</math>

<math>~4y^{1/2}\frac{d}{dy} + 4y^{3/2}\frac{d^2}{dy^2}</math>

and,

<math>~ - 2ny \biggl[\biggl( \frac{\sigma}{\Omega_0} + m \biggr)^2 -|k|\biggr] \Upsilon </math>

<math>~=</math>

<math>~ (1-y)y \biggl[ 4y^{1/2}\frac{d\Upsilon}{dy} + 4y^{3/2}\frac{d^2\Upsilon}{dy^2}\biggr] + 2(2|k|+1)(1-y)y \frac{d\Upsilon}{dy} - \biggl[ 4 n y^{2} \frac{d\Upsilon}{dy} \biggr] </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation