Difference between revisions of "User:Tohline/Apps/PapaloizouPringle84"

From VistrailsWiki
Jump to navigation Jump to search
(→‎GGN86: Clean up comparison of equation sets between PP84 and GGN86)
(→‎Nod to Oort Constants and Simple Rotation Profiles: Insert wikipedia link to "Oort constants")
Line 757: Line 757:


====Nod to Oort Constants and Simple Rotation Profiles====
====Nod to Oort Constants and Simple Rotation Profiles====
Acknowledging the galactic dynamics community's familiarity with the so-called ''Oort constants'', and in anticipation of our [[#Velocity_Components|review of the GGN86 derivation]] that follows, we define the following two "Oort functions":
Acknowledging the galactic dynamics community's familiarity with the so-called [https://en.wikipedia.org/wiki/Oort_constants ''Oort constants''], and in anticipation of our [[#Velocity_Components|review of the GGN86 derivation]] that follows, we define the following two "Oort functions":
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 902: Line 902:


{{LSU_WorkInProgress}}
{{LSU_WorkInProgress}}


====Velocity Components====
====Velocity Components====

Revision as of 19:06, 17 March 2016


Nonaxisymmetric Instability in Papaloizou-Pringle Tori

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Linearized Principal Governing Equations in Cylindrical Coordinates

We begin by drawing from an accompanying derivation the relevant set of linearized principal governing equations, written in cylindrical coordinates but, following the lead of Papaloizou & Pringle (1984, MNRAS, 208, 721-750; hereafter, PP84), express each perturbation in the form,

<math>~q^'~~\rightarrow~~ q^' (\varpi,z) f_\sigma</math>

        where,        

<math>~f_\sigma \equiv e^{i(m\varphi + \sigma t)} \, ,</math>

and, set <math>~\Phi^' = 0</math> — hence, the Poisson equation becomes irrelevant — because the torus is assumed not to be self-gravitating and the background (point source) potential, <math>~\Phi_0</math>, is assumed to be unchanging.

Set of Linearized Principal Governing Equations in Cylindrical Coordinates

Continuity Equation

<math>~\frac{\partial (\rho^' f_\sigma) }{\partial t} + ( {\dot\varphi}_0 )\frac{\partial (\rho^' f_\sigma)}{\partial \varphi} </math>

<math>~=</math>

<math>~ - \frac{f_\sigma}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' f_\sigma\biggr] - f_\sigma\frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] </math>

<math>\varpi</math> Component of Euler Equation

<math>~ \frac{\partial ({\dot\varpi}^'f_\sigma) }{\partial t} + ( {\dot\varphi}_0 ) \frac{\partial ( {\dot\varpi}^'f_\sigma)}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^' f_\sigma) </math>

<math>~=</math>

<math>~ - f_\sigma\frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) </math>

<math>\varphi</math> Component of Euler Equation

<math>~\frac{\partial (\varpi {\dot\varphi}^' f_\sigma)}{\partial t} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^' f_\sigma)}{\partial\varphi} + \frac{{\dot\varpi}^' f_\sigma}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{ 1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'f_\sigma}{\rho_0}\biggr) \biggr] </math>

<math>~z</math> Component of Euler Equation

<math>~ \frac{\partial ({\dot{z}}^' f_\sigma)}{\partial t} + (\dot\varphi_0) \frac{\partial ({\dot{z}}^' f_\sigma)}{\partial\varphi} </math>

<math>~=</math>

<math>~ - f_\sigma \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) </math>

Adiabatic Form of the 1st Law of Thermodynamics

<math>~\frac{P^' f_\sigma}{P_0}</math>

<math>~=</math>

<math>~ \frac{\gamma (\rho^' f_\sigma)}{\rho_0} </math>


Next, taking derivatives of <math>~f_\sigma</math>, where indicated, then dividing every equation through by <math>~f_\sigma</math> gives,

Linearized Adiabatic Form of the 1st Law of Thermodynamics

<math>~\frac{P^' }{P_0}</math>

<math>~=</math>

<math>~ \frac{\gamma \rho^' }{\rho_0} \, ;</math>

Linearized <math>\varpi</math> Component of Euler Equation

<math>~{\dot\varpi}^'[i(\sigma + m{\dot\varphi}_0)] - 2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' ) </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math>

Linearized <math>\varphi</math> Component of Euler Equation

<math>~(\varpi {\dot\varphi}^')[i(\sigma + m{\dot\varphi}_0)] + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{ im}{\varpi} \biggl(\frac{P^'}{\rho_0}\biggr) \, ; </math>

Linearized <math>~z</math> Component of Euler Equation

<math>~ ~{\dot{z}}^'[i(\sigma + m{\dot\varphi}_0)] </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math>

Linearized Continuity Equation

<math>~\rho^'[i(\sigma + m{\dot\varphi}_0)] + i m\rho_0 (\varpi {\dot\varphi}^' ) </math>

<math>~=</math>

<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . </math>

These five equations match, respectively, equations (3.8) - (3.12) of PP84.

Rewritten Velocity Components

PP84

Again following the lead of PP84, we let <math>~W^'</math> represent the (normalized) perturbation in the fluid entropy, specifically,

<math>~W^' </math>

<math>~\equiv</math>

<math>~\frac{P^'}{\rho_0(\sigma + m{\dot\varphi}_0)} </math>

<math>~\Rightarrow~~~~\frac{\partial}{\partial\varpi}\biggl(\frac{P^'}{\rho_0} \biggr)</math>

<math>~=</math>

<math>~\frac{\partial}{\partial\varpi} \biggl[ W^'(\sigma + m{\dot\varphi}_0 )\biggr]</math>

 

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0 )\frac{\partial W^'}{\partial\varpi} + mW^'\frac{\partial {\dot\varphi}_0 }{\partial\varpi} </math>

in which case the three linearized components of the Euler equation may be rewritten as,

Linearized <math>\varpi</math> Component of Euler Equation

<math>~{\dot\varpi}^' </math>

<math>~=</math>

<math>~ i \biggl[ \frac{\partial W^'}{\partial\varpi} + \frac{mW^'}{(\sigma + m{\dot\varphi}_0)}\frac{\partial {\dot\varphi}_0 }{\partial\varpi} - \frac{2{\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] </math>

Linearized <math>\varphi</math> Component of Euler Equation

<math>~(\varpi {\dot\varphi}^') </math>

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \, ; </math>

Linearized <math>~z</math> Component of Euler Equation

<math>~ ~{\dot{z}}^' </math>

<math>~=</math>

<math>~ i~\frac{\partial W^'}{\partial z} \, . </math>

Using the second of these three relations to provide an expression for <math>~(\varpi {\dot\varphi}^')</math> in terms of <math>~W^'</math> and <math>~{\dot\varpi}^'</math>, and plugging this expression into the first relation allows us to solve for the radial component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative. Specifically, we obtain,

<math>~{\dot\varpi}^' </math>

<math>~=</math>

<math>~i \frac{\partial W^'}{\partial \varpi} + i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} - \frac{2 {\dot\varphi}_0 }{\varpi}\biggr] - i~ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggl[ - \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr] </math>

 

<math>~=</math>

<math>~i \frac{\partial W^'}{\partial \varpi} + i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr] + \biggl[ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggr]\biggl[ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr] </math>

 

<math>~=</math>

<math>~i \biggl[ \frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) \frac{ mW^'}{\bar\sigma} \biggr] + \biggl[ {\dot\varpi}^'\biggl( \frac{ \kappa^2 }{ {\bar\sigma}^2 } \biggr) \biggr] </math>

<math>~\Rightarrow ~~~~ {\dot\varpi}^' ({\bar\sigma}^2 - \kappa^2 )</math>

<math>~=</math>

<math>~i \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) mW^' \bar\sigma \biggr] \, , </math>

where, adopting notation from PP84,

<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>

        and        

<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) \, .</math>

This means, as well, that,

<math>~(\varpi {\dot\varphi}^') ({\bar\sigma}^2 - \kappa^2 ) </math>

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} ({\bar\sigma}^2 - \kappa^2 ) - \frac{ 1 }{\varpi \bar\sigma }\biggl[ \frac{\kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr] \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{2 {\dot\varphi}_0}{\varpi} + \frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) mW^' \bar\sigma \biggr] </math>

 

<math>~=</math>

<math>~- \frac{ m{\bar\sigma}^2 W^'}{\varpi} + \frac{ m\kappa^2W^'}{\varpi} - \frac{\kappa^2 {\bar\sigma} }{ 2{\dot\varphi}_0 } \biggl[ ~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{2 {\dot\varphi}_0}{\varpi} + \frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{mW^' }{\bar\sigma } \biggr] </math>

 

<math>~=</math>

<math>~- \frac{ m{\bar\sigma}^2 W^'}{\varpi} - \frac{\kappa^2 {\bar\sigma} }{ 2{\dot\varphi}_0 } \biggl[ ~\frac{\partial W^'}{\partial \varpi} +\biggl(\frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{mW^' }{\bar\sigma } \biggr] \, . </math>


In summary, the three components of the perturbed velocity are:


Cylindrical-Coordinate Components of the Perturbed Velocity from PP84

<math>\varpi</math> Component

<math>~ {\dot\varpi}^' ({\bar\sigma}^2 - \kappa^2 )</math>

<math>~=</math>

<math>~i \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) mW^' \bar\sigma \biggr] \, , </math>

<math>\varphi</math> Component

<math>~(\varpi {\dot\varphi}^') ({\bar\sigma}^2 - \kappa^2 ) </math>

<math>~=</math>

<math>~- \frac{ m{\bar\sigma}^2 W^'}{\varpi} - \frac{\kappa^2 {\bar\sigma} }{ 2{\dot\varphi}_0 } \biggl[ ~\frac{\partial W^'}{\partial \varpi} +\biggl(\frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{mW^' }{\bar\sigma } \biggr] \, . </math>

<math>~z</math> Component

<math>~ ~{\dot{z}}^' </math>

<math>~=</math>

<math>~ i~\frac{\partial W^'}{\partial z} \, . </math>

where, the square of the epicyclic frequency,

<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>

        and        

<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) </math>


These three velocity-component expressions match, respectively, equations (3.14), (3.15), and (3.16) of PP84.

GGN86

In §2.2 of their paper, P. Goldreich, J. Goodman, and R. Narayan (1986, MNRAS, 221, 339) — hereafter, GGN86 — also present expressions for the three components of the perturbed velocity. Here we seek to identify key differences in approach but, ultimately, highlight the degree of agreement between the GGN86 and the PP84 analyses.

Preamble

First, let's make the substitution,

<math>Q_{JT} \equiv (\sigma + m{\dot\varphi}_0) W^' \, ,</math>

in which case,

<math>~\frac{\partial W^'}{\partial\varpi}</math>

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0)^{-1} \frac{\partial Q_{JT} }{\partial \varpi} - Q_{JT} (\sigma + m{\dot\varphi}_0)^{-2} m\frac{\partial {\dot\varphi}_0}{\partial \varpi} </math>

 

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0)^{-2} \biggl[ (\sigma + m{\dot\varphi}_0)\frac{\partial Q_{JT} }{\partial \varpi} - m Q_{JT} \biggl( \frac{\partial {\dot\varphi}_0}{\partial \varpi} \biggr) \biggr] \, . </math>

Then we can rewrite the radial component of the perturbed velocity as,

<math>~i~ {\dot\varpi}^' ( \kappa^2 - {\bar\sigma}^2 )</math>

<math>~=</math>

<math>~\biggl[ (\sigma + m{\dot\varphi}_0)\frac{\partial Q_{JT} }{\partial \varpi} - m Q_{JT} \biggl( \frac{\partial {\dot\varphi}_0}{\partial \varpi} \biggr) \biggr] +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) m Q_{JT} </math>

 

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0)\frac{\partial Q_{JT} }{\partial \varpi} +m Q_{JT} \biggl[ \biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) -\biggl( \frac{\partial {\dot\varphi}_0}{\partial \varpi} \biggr) \biggr] </math>

 

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0)\frac{\partial Q_{JT} }{\partial \varpi} +m Q_{JT} \biggl\{ \frac{1}{\varpi^2} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] -\biggl( \frac{\partial {\dot\varphi}_0}{\partial \varpi} \biggr) \biggr\} </math>

 

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0)\frac{\partial Q_{JT} }{\partial \varpi} + (2\dot\varphi_0)\frac{m Q_{JT}}{\varpi} </math>

<math>~{\dot\varpi}^' ( \kappa^2 - {\bar\sigma}^2 )</math>

<math>~=</math>

<math>~- i~\bar\sigma \frac{\partial Q_{JT} }{\partial \varpi} - (2i\dot\varphi_0)\frac{m Q_{JT}}{\varpi} \, . </math>

Similarly, we can rewrite the azimuthal component of the perturbed velocity as,

<math>~(\varpi {\dot\varphi}^') ( \kappa^2 - {\bar\sigma}^2) </math>

<math>~=</math>

<math>~ \frac{ m{\bar\sigma}^2 }{\varpi}(\sigma + m{\dot\varphi}_0)^{-1}Q_{JT} + \frac{\kappa^2 {\bar\sigma} }{ 2{\dot\varphi}_0 }

\biggl\{ ~(\sigma + m{\dot\varphi}_0)^{-2} \biggl[ (\sigma + m{\dot\varphi}_0)\frac{\partial  Q_{JT} }{\partial \varpi}

- m Q_{JT} \biggl( \frac{\partial {\dot\varphi}_0}{\partial \varpi} \biggr) \biggr] +\biggl(\frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{m}{\bar\sigma } (\sigma + m{\dot\varphi}_0)^{-1}Q_{JT} \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{ m{\bar\sigma} }{\varpi} Q_{JT} + \frac{\kappa^2 }{ 2{\dot\varphi}_0 }

\biggl\{ ~\biggl[ \frac{\partial  Q_{JT} }{\partial \varpi}

- \biggl( \frac{\partial {\dot\varphi}_0}{\partial \varpi} \biggr) \frac{m}{\bar\sigma} Q_{JT} \biggr] +\biggl(\frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{m}{\bar\sigma } Q_{JT} \biggr\} </math>

 

<math>~=</math>

<math>~ \biggl( \frac{\kappa^2 }{ 2{\dot\varphi}_0 } \biggr) \frac{\partial Q_{JT} }{\partial \varpi} + \bar\sigma \frac{mQ_{JT} }{\varpi} \, . </math>

Finally, the vertical component of the perturbed velocity becomes,

<math>~ ~{\dot{z}}^' </math>

<math>~=</math>

<math>~ i~(\sigma + m{\dot\varphi}_0)^{-1} \frac{\partial Q_{JT}}{\partial z} \, . </math>

<math>~\Rightarrow~~~~i~\bar\sigma {\dot{z}}^' </math>

<math>~=</math>

<math>~ -\frac{\partial Q_{JT}}{\partial z} \, . </math>

Nod to Oort Constants and Simple Rotation Profiles

Acknowledging the galactic dynamics community's familiarity with the so-called Oort constants, and in anticipation of our review of the GGN86 derivation that follows, we define the following two "Oort functions":

<math>~A</math>

<math>~\equiv</math>

<math>~- \frac{1}{2}\biggl[ {\dot\varphi}_0 - \frac{\partial}{\partial \varpi}\biggl( \varpi {\dot\varphi}_0 \biggr) \biggr] \, ,</math>

<math>~B</math>

<math>~\equiv</math>

<math>~\frac{1}{2}\biggl[ {\dot\varphi}_0 + \frac{\partial}{\partial \varpi}\biggl( \varpi {\dot\varphi}_0 \biggr) \biggr] \, .</math>

Given these definitions, we note that,

<math>~B - A </math>

<math>~=</math>

<math>~{\dot\varphi}_0 \, ;</math>

and, given the definition of the square of the epicyclic frequency, above, we can write,

<math>~\kappa^2</math>

<math>~=</math>

<math>~4{\dot\varphi}_0 B = 4B (B - A) \, .</math>

In line with our own discussion of simple rotation profiles (but note that, in that chapter, the variable we use for the power-law exponent is different from theirs), GGN86 adopt a generalized power-law rotation profile of the form (see their equation 2.1),

<math>~{\dot\varphi}_0(\varpi)</math>

<math>~=</math>

<math>~ \Omega_0 \biggl( \frac{\varpi}{\varpi_0} \biggr)^{-q} \, ,</math>

in which case we also have,

<math>~\frac{\partial}{\partial \varpi} \biggl( \varpi {\dot\varphi}_0 \biggr)</math>

<math>~=</math>

<math>~ \frac{\partial}{\partial \varpi} \biggl[ \Omega_0 \varpi_0^{q} \varpi^{1-q}\biggr] = (1-q){\dot\varphi}_0 \, .</math>

Given this particular adopted profile, it is therefore clear that,

<math>~A_\mathrm{GGN}</math>

<math>~\equiv</math>

<math>~- \frac{1}{2}\biggl[ {\dot\varphi}_0 - (1-q) {\dot\varphi}_0\biggr] = - \frac{q}{2} {\dot\varphi}_0 \, ;</math>

<math>~B_\mathrm{GGN}</math>

<math>~\equiv</math>

<math>~ \frac{1}{2}\biggl[ {\dot\varphi}_0 + (1-q) {\dot\varphi}_0\biggr] = \frac{1}{2} (2-q) {\dot\varphi}_0 \, ;</math>

<math>~\kappa^2_\mathrm{GGN}</math>

<math>~=</math>

<math>~4{\dot\varphi}_0 \biggl[ \frac{1}{2} (2-q) {\dot\varphi}_0 \biggr] = 2(2-q){\dot\varphi}_0^2 \, .</math>

These three expressions are in line with GGN86 equations (2.4), (2.6), and (2.24), respectively.



Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


Velocity Components

Direct Comparison of Derived Equations

The left panel of the following equation-table presents, once again, our above rewrite of the three components of the perturbed velocity derived in PP84 after we have replaced <math>~\kappa^2</math> (on the right-hand side of the <math>~\varphi</math> component) with its expression in terms of the "Oort function", <math>~B</math>. For comparison, the right panel of the same equation-table shows the analogous perturbed velocity-component expressions derived by GGN86 (see their equations 2.21 - 2.25).

Rewrite of the Components of the Perturbed Velocity from PP84

Perturbed Velocity Components from §2.2 of GGN86

<math>\varpi</math> Component

<math>~{\dot\varpi}^' ( \kappa^2 - {\bar\sigma}^2 )</math>

<math>~=</math>

<math>~- i~\bar\sigma \frac{\partial Q_{JT} }{\partial \varpi} - (2i\dot\varphi_0)\frac{m Q_{JT}}{\varpi} \, , </math>

<math>\varphi</math> Component

<math>~(\varpi {\dot\varphi}^') ( \kappa^2 - {\bar\sigma}^2) </math>

<math>~=</math>

<math>~ 2B \frac{\partial Q_{JT} }{\partial \varpi} + \bar\sigma \frac{mQ_{JT} }{\varpi} \, , </math>

<math>~z</math> Component

<math>~\Rightarrow~~~~i~\bar\sigma {\dot{z}}^' </math>

<math>~=</math>

<math>~ -\frac{\partial Q_{JT}}{\partial z} \, . </math>

<math>~x</math> Component

<math>~ u ( \kappa^2 - \sigma^2_\mathrm{GGN})</math>

<math>~=</math>

<math>~i \biggl[ \sigma_\mathrm{GGN}~\frac{\partial Q}{\partial x} - 2\Omega_0 k Q \biggr] \, , </math>

<math>~y</math> Component

<math>~ v ( \kappa^2 - \sigma^2_\mathrm{GGN})</math>

<math>~=</math>

<math>~2B~\frac{\partial Q}{\partial x} - \sigma_\mathrm{GGN} k Q \, , </math>

<math>~z</math> Component

<math>~ ~-i~\sigma_\mathrm{GGN}w </math>

<math>~=</math>

<math>~- \frac{\partial Q}{\partial z} \, . </math>

These sets of expressions are identical if we adopt the following three variable mappings,

<math>~Q_{JT}\equiv\bar\sigma W^'</math>

<math>~\leftrightarrow</math>

<math>~Q \, ,</math>

<math>~-~\bar\sigma </math>

<math>~\leftrightarrow</math>

<math>~\sigma_\mathrm{GGN} \, ,</math>

<math>~m/\varpi</math>

<math>~\leftrightarrow</math>

<math>~k \, ,</math>

and recognize that the appropriate association between the variable names that has been used for the three perturbed velocity-components is:

<math>~{\dot\varpi}^'</math>

<math>~\leftrightarrow</math>

<math>~u \, ,</math>

<math>~(\varpi {\dot\varphi}^') </math>

<math>~\leftrightarrow</math>

<math>~v \, ,</math>

<math>~{\dot{z}}^'</math>

<math>~\leftrightarrow</math>

<math>~w \, .</math>

Checking Self-Consistency

Let's see if the deduced variable mappings make sense in the context of, for example, the GGN86 derivation. If we make the specified substitution for <math>~k</math>, and insert the (above derived) power-law expression for the "Oort function", <math>~A</math>, into the GGN86 definition of <math>~\sigma_\mathrm{GGN}</math> — see their equation (2.18) — we find,

<math>~\sigma_\mathrm{GGN}</math>

<math>~\equiv</math>

<math>~ \omega - 2Akx </math>

 

<math>~=</math>

<math>~ \omega + m{\dot\varphi}_0 \biggl( \frac{qx}{\varpi} \biggr) \, . </math>

Following the prescribed variable mapping, this should be compared with the (negative of the) PP84 definition of <math>~\bar\sigma</math>, namely,

<math>~- \bar\sigma</math>

<math>~\equiv</math>

<math>~-\sigma - m{\dot\varphi}_0 \, .</math>



Formulation of Eigenvalue Problem

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation