Difference between revisions of "User:Tohline/Apps/PapaloizouPringle84"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Formulation of Eigenvalue Problem: Trying to derive perturbed velocity expressions)
(→‎Formulation of Eigenvalue Problem: Correct some derivations problems)
Line 225: Line 225:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~W^'</math>
<math>~W^' </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 231: Line 231:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{P^'}{\rho_0(\sigma + m{\dot\varphi}_0)} \, ,</math>
<math>~\frac{P^'}{\rho_0(\sigma + m{\dot\varphi}_0)} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow~~~~\frac{\partial}{\partial\varpi}\biggl(\frac{P^'}{\rho_0} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\partial}{\partial\varpi} \biggl[ W^'(\sigma + m{\dot\varphi}_0 )\biggr]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(\sigma + m{\dot\varphi}_0 )\frac{\partial W^'}{\partial\varpi}  + mW^'\frac{\partial  {\dot\varphi}_0 }{\partial\varpi} </math>
   </td>
   </td>
</tr>
</tr>
Line 244: Line 268:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~{\dot\varpi}^'  
<math>~{\dot\varpi}^'
</math>
</math>
   </td>
   </td>
Line 251: Line 275:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~i \biggl[\frac{\partial W^'}{\partial \varpi}  
<math>~
- \frac{2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] \, ;
i \biggl[ \frac{\partial W^'}{\partial\varpi} + \frac{mW^'}{(\sigma + m{\dot\varphi}_0)}\frac{\partial  {\dot\varphi}_0 }{\partial\varpi} 
- \frac{2{\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)}   \biggr]
</math>
</math>
   </td>
   </td>
Line 292: Line 317:
</div>
</div>


Using the second of these three relations to provide an expression for <math>~(\varpi {\dot\varphi}^')</math> in terms of <math>~W^'</math> and <math>~{\dot\varpi}^'</math>, and plugging this expression into the second relation allows us to solve for the radial component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative.  Specifically, we obtain,
Using the second of these three relations to provide an expression for <math>~(\varpi {\dot\varphi}^')</math> in terms of <math>~W^'</math> and <math>~{\dot\varpi}^'</math>, and plugging this expression into the first relation allows us to solve for the radial component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative.  Specifically, we obtain,


<div align="center">
<div align="center">
Line 306: Line 331:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~i \frac{\partial W^'}{\partial \varpi}  
<math>~i \frac{\partial W^'}{\partial \varpi} + i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} - \frac{2 {\dot\varphi}_0 }{\varpi}\biggr]
- i~ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)}  
- i~ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)}  
\biggl[ -  \frac{ mW^'}{\varpi}  + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr]
\biggl[ -  \frac{ mW^'}{\varpi}  + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr]
Line 322: Line 347:
   <td align="left">
   <td align="left">
<math>~i \frac{\partial W^'}{\partial \varpi}  
<math>~i \frac{\partial W^'}{\partial \varpi}  
+\biggl[  \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggr]\biggl[ i~  \frac{ mW^'}{\varpi}\biggr]   
+ i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr]   
+ \biggl[  \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggr]\biggl[ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr]
+ \biggl[  \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggr]\biggl[ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr]
</math>
</math>
Line 337: Line 362:
   <td align="left">
   <td align="left">
<math>~i \biggl[ \frac{\partial W^'}{\partial \varpi}  
<math>~i \biggl[ \frac{\partial W^'}{\partial \varpi}  
+\biggl( \frac{2 {\dot\varphi}_0 }{\varpi} \biggr) \frac{ mW^'}{\bar\sigma}  \biggr]
+\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) \frac{ mW^'}{\bar\sigma}  \biggr]
+ \biggl[ {\dot\varpi}^'\biggl( \frac{ \kappa^2 }{  {\bar\sigma}^2 } \biggr) \biggr]
+ \biggl[ {\dot\varpi}^'\biggl( \frac{ \kappa^2 }{  {\bar\sigma}^2 } \biggr) \biggr]
</math>
</math>
Line 352: Line 377:
   <td align="left">
   <td align="left">
<math>~i \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi}  
<math>~i \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi}  
+\biggl( \frac{2 {\dot\varphi}_0 }{\varpi} \biggr) mW^' \bar\sigma  \biggr] \, .
+\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) mW^' \bar\sigma  \biggr] \, ,
</math>
</math>
   </td>
   </td>
Line 359: Line 384:
</div>
</div>


where, adopting notation from PP84,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp;
  </td>
  <td align="left">
<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) \, .</math>
  </td>
</tr>
</table>
</div>
This means, as well, that,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~(\varpi {\dot\varphi}^')  ({\bar\sigma}^2 - \kappa^2 )
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-  \frac{ mW^'}{\varpi} ({\bar\sigma}^2 - \kappa^2 )
- \frac{ 1 }{\varpi \bar\sigma }\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi}  \biggr] 
\biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi}
+\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0}  \biggr) mW^' \bar\sigma  \biggr]
</math>
  </td>
</tr>
</table>
</div>




Line 411: Line 478:
</table>
</table>
</div>
</div>
where, adopting notation from PP84,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp;
  </td>
  <td align="left">
<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) \, .</math>
  </td>
</tr>
</table>
</div>





Revision as of 18:35, 13 March 2016


Nonaxisymmetric Instability in Papaloizou-Pringle Tori

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Linearized Principal Governing Equations in Cylindrical Coordinates

We begin by drawing from an accompanying derivation the relevant set of linearized principal governing equations, written in cylindrical coordinates but, following the lead of Papaloizou & Pringle (1984, MNRAS, 208, 721-750; hereafter, PP84), express each perturbation in the form,

<math>~q^'~~\rightarrow~~ q^' (\varpi,z) f_\sigma</math>

        where,        

<math>~f_\sigma \equiv e^{i(m\varphi + \sigma t)} \, ,</math>

and, set <math>~\Phi^' = 0</math> — hence, the Poisson equation becomes irrelevant — because the torus is assumed not to be self-gravitating and the background (point source) potential, <math>~\Phi_0</math>, is assumed to be unchanging.

Set of Linearized Principal Governing Equations in Cylindrical Coordinates

Continuity Equation

<math>~\frac{\partial (\rho^' f_\sigma) }{\partial t} + ( {\dot\varphi}_0 )\frac{\partial (\rho^' f_\sigma)}{\partial \varphi} </math>

<math>~=</math>

<math>~ - \frac{f_\sigma}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' f_\sigma\biggr] - f_\sigma\frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] </math>

<math>\varpi</math> Component of Euler Equation

<math>~ \frac{\partial ({\dot\varpi}^'f_\sigma) }{\partial t} + ( {\dot\varphi}_0 ) \frac{\partial ( {\dot\varpi}^'f_\sigma)}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^' f_\sigma) </math>

<math>~=</math>

<math>~ - f_\sigma\frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) </math>

<math>\varphi</math> Component of Euler Equation

<math>~\frac{\partial (\varpi {\dot\varphi}^' f_\sigma)}{\partial t} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^' f_\sigma)}{\partial\varphi} + \frac{{\dot\varpi}^' f_\sigma}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{ 1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'f_\sigma}{\rho_0}\biggr) \biggr] </math>

<math>~z</math> Component of Euler Equation

<math>~ \frac{\partial ({\dot{z}}^' f_\sigma)}{\partial t} + (\dot\varphi_0) \frac{\partial ({\dot{z}}^' f_\sigma)}{\partial\varphi} </math>

<math>~=</math>

<math>~ - f_\sigma \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) </math>

Adiabatic Form of the 1st Law of Thermodynamics

<math>~\frac{P^' f_\sigma}{P_0}</math>

<math>~=</math>

<math>~ \frac{\gamma (\rho^' f_\sigma)}{\rho_0} </math>


Next, taking derivatives of <math>~f_\sigma</math>, where indicated, then dividing every equation through by <math>~f_\sigma</math> gives,

Linearized Adiabatic Form of the 1st Law of Thermodynamics

<math>~\frac{P^' }{P_0}</math>

<math>~=</math>

<math>~ \frac{\gamma \rho^' }{\rho_0} \, ;</math>

Linearized <math>\varpi</math> Component of Euler Equation

<math>~{\dot\varpi}^'[i(\sigma + m{\dot\varphi}_0)] - 2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' ) </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math>

Linearized <math>\varphi</math> Component of Euler Equation

<math>~(\varpi {\dot\varphi}^')[i(\sigma + m{\dot\varphi}_0)] + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{ im}{\varpi} \biggl(\frac{P^'}{\rho_0}\biggr) \, ; </math>

Linearized <math>~z</math> Component of Euler Equation

<math>~ ~{\dot{z}}^'[i(\sigma + m{\dot\varphi}_0)] </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math>

Linearized Continuity Equation

<math>~\rho^'[i(\sigma + m{\dot\varphi}_0)] + i m\rho_0 (\varpi {\dot\varphi}^' ) </math>

<math>~=</math>

<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . </math>

These five equations match, respectively, equations (3.8) - (3.12) of PP84.

Formulation of Eigenvalue Problem

Again following the lead of PP84, we let <math>~W^'</math> represent the (normalized) perturbation in the fluid entropy, specifically,

<math>~W^' </math>

<math>~\equiv</math>

<math>~\frac{P^'}{\rho_0(\sigma + m{\dot\varphi}_0)} </math>

<math>~\Rightarrow~~~~\frac{\partial}{\partial\varpi}\biggl(\frac{P^'}{\rho_0} \biggr)</math>

<math>~=</math>

<math>~\frac{\partial}{\partial\varpi} \biggl[ W^'(\sigma + m{\dot\varphi}_0 )\biggr]</math>

 

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0 )\frac{\partial W^'}{\partial\varpi} + mW^'\frac{\partial {\dot\varphi}_0 }{\partial\varpi} </math>

in which case the three linearized components of the Euler equation may be rewritten as,

Linearized <math>\varpi</math> Component of Euler Equation

<math>~{\dot\varpi}^' </math>

<math>~=</math>

<math>~ i \biggl[ \frac{\partial W^'}{\partial\varpi} + \frac{mW^'}{(\sigma + m{\dot\varphi}_0)}\frac{\partial {\dot\varphi}_0 }{\partial\varpi} - \frac{2{\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] </math>

Linearized <math>\varphi</math> Component of Euler Equation

<math>~(\varpi {\dot\varphi}^') </math>

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \, ; </math>

Linearized <math>~z</math> Component of Euler Equation

<math>~ ~{\dot{z}}^' </math>

<math>~=</math>

<math>~ i~\frac{\partial W^'}{\partial z} \, . </math>

Using the second of these three relations to provide an expression for <math>~(\varpi {\dot\varphi}^')</math> in terms of <math>~W^'</math> and <math>~{\dot\varpi}^'</math>, and plugging this expression into the first relation allows us to solve for the radial component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative. Specifically, we obtain,

<math>~{\dot\varpi}^' </math>

<math>~=</math>

<math>~i \frac{\partial W^'}{\partial \varpi} + i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} - \frac{2 {\dot\varphi}_0 }{\varpi}\biggr] - i~ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggl[ - \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr] </math>

 

<math>~=</math>

<math>~i \frac{\partial W^'}{\partial \varpi} + i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr] + \biggl[ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggr]\biggl[ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr] </math>

 

<math>~=</math>

<math>~i \biggl[ \frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) \frac{ mW^'}{\bar\sigma} \biggr] + \biggl[ {\dot\varpi}^'\biggl( \frac{ \kappa^2 }{ {\bar\sigma}^2 } \biggr) \biggr] </math>

<math>~\Rightarrow ~~~~ {\dot\varpi}^' ({\bar\sigma}^2 - \kappa^2 )</math>

<math>~=</math>

<math>~i \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) mW^' \bar\sigma \biggr] \, , </math>

where, adopting notation from PP84,

<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>

        and        

<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) \, .</math>

This means, as well, that,

<math>~(\varpi {\dot\varphi}^') ({\bar\sigma}^2 - \kappa^2 ) </math>

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} ({\bar\sigma}^2 - \kappa^2 ) - \frac{ 1 }{\varpi \bar\sigma }\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) mW^' \bar\sigma \biggr] </math>


Using the first of these three relations to provide an expression for <math>~{\dot\varpi}^'</math> in terms of <math>~W^'</math> and <math>~{\dot\varphi}^'</math>, and plugging this expression into the second relation allows us to solve for the azimuthal component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative. Specifically, we obtain,

<math>~(\varpi {\dot\varphi}^') </math>

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} - \frac{1}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \biggl[\frac{\partial W^'}{\partial \varpi} - \frac{2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] </math>

 

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} - \frac{\kappa^2}{2{\dot\varphi}_0 {\bar\sigma}} \biggl[\frac{\partial W^'}{\partial \varpi} \biggr] + \biggl[\frac{\kappa^2 (\varpi {\dot\varphi}^' )}{{\bar\sigma}^2} \biggr] </math>

<math>~\Rightarrow ~~~~(\varpi {\dot\varphi}^') (\kappa^2 - {\bar\sigma}^2 ) </math>

<math>~=</math>

<math>~\frac{ m{\bar\sigma}^2W^'}{\varpi} + \frac{\kappa^2{\bar\sigma}}{2{\dot\varphi}_0 } \biggl[\frac{\partial W^'}{\partial \varpi} \biggr] </math>


From our more detailed, accompanying discussion we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation