Difference between revisions of "User:Tohline/Cylindrical 3D/Linearization"

From VistrailsWiki
Jump to navigation Jump to search
(Begin new chapter in which the linearized equations are derived in cylindrical coordiinates)
 
(→‎Eulerian Formulation of Nonlinear Governing Equations: Finished linearizing varpi-component of Euler)
Line 8: Line 8:


From our more detailed, [[User:Tohline/Cylindrical_3D#Eulerian_Formulation|accompanying discussion]] we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.
From our more detailed, [[User:Tohline/Cylindrical_3D#Eulerian_Formulation|accompanying discussion]] we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.
<div align="center">
<span id="EulerContinuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
<math>
\frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0
</math><br />
</div>




Line 63: Line 52:
</div>
</div>


<div align="center">
<span id="EulerContinuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />


<math>
\frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0
</math><br />
</div>


These match, for example, equations (3.1) - (3.4)  of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P Papaloizou &amp; Pringle] (1984, MNRAS, 208, 721-750), hereafter, PPI.
If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial {\dot\varpi}^'}{\partial t} +
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
-  \varpi ( { {\dot\varphi}_0 + {\dot\varphi}^'})^2 </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial \Phi_0}{\partial\varpi}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~~
\frac{\partial {\dot\varpi}^'}{\partial t} +
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
-  \varpi ( {\dot\varphi}_0)^2 -  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0}  \biggr)
- \frac{\partial \Phi_0}{\partial\varpi}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~~
\frac{\partial {\dot\varpi}^'}{\partial t} +
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
+ \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{  \varpi ( {\dot\varphi}_0)^2
- \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]
- \frac{\partial \Phi_0}{\partial\varpi} \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~~
\frac{\partial {\dot\varpi}^'}{\partial t} +
\biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr]
-  2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')
+ \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0 \, .
</math>
  </td>
</tr>
</table>
</div>


=See Also=
=See Also=

Revision as of 01:37, 11 March 2016


Linearized Equations in Cylindrical Coordinates

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Eulerian Formulation of Nonlinear Governing Equations

From our more detailed, accompanying discussion we pull the Eulerian representation of the set of principal governing equations written in cylindrical coordinates.


<math>\varpi</math> Component of Euler Equation

<math> \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>


<math>\varphi</math> Component of Euler Equation


<math> \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>


<math>z</math> Component of Euler Equation

<math> \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>


Equation of Continuity

<math> \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>

These match, for example, equations (3.1) - (3.4) of Papaloizou & Pringle (1984, MNRAS, 208, 721-750), hereafter, PPI.


If we assume that the initial equilibrium configuration is axisymmetric with no radial or vertical velocity, the linearized equations become,

<math>~\frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( { {\dot\varphi}_0 + {\dot\varphi}^'})^2 </math>

<math>~=</math>

<math>~- \frac{1}{(\rho_0 + \rho^')}\frac{\partial (P_0 + P^')}{\partial\varpi} - \frac{\partial \Phi_0}{\partial\varpi}</math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - \varpi ( {\dot\varphi}_0)^2 - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^')</math>

<math>~=</math>

<math>~- \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi} - \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr]\biggl(1 - \frac{\rho^'}{\rho_0} \biggr) - \frac{\partial \Phi_0}{\partial\varpi}</math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{1}{\rho_0}\frac{\partial P^'}{\partial\varpi}- \frac{\rho^'}{\rho_0^2}\frac{\partial P_0 }{\partial\varpi}\biggr] </math>

<math>~=</math>

<math>~\biggl\{ \varpi ( {\dot\varphi}_0)^2 - \biggl[\frac{1}{\rho_0}\frac{\partial P_0 }{\partial\varpi}\biggr] - \frac{\partial \Phi_0}{\partial\varpi} \biggr\} </math>

<math>~\Rightarrow~~~~ \frac{\partial {\dot\varpi}^'}{\partial t} + \biggl[ {\dot\varphi}_0 \frac{\partial {\dot\varpi}^'}{\partial\varphi} \biggr] - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^') + \biggl[ \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \biggr] </math>

<math>~=</math>

<math>~0 \, . </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation