Difference between revisions of "User:Tohline/SSC/Stability/MoreGeneralApproach"

From VistrailsWiki
Jump to navigation Jump to search
(New chapter to further pursue the eigenfunction of the parabolic density distribution)
 
(Begin new chapter)
Line 5: Line 5:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


The material presented in this chapter is an extension of the chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Models|Other Analytic Models]] and could also be considered to be a subsection of the associated chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Ramblings|Other Analytic Ramblings]].  
The material presented in this chapter is an extension of the chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Models|Other Analytic Models]] and could also be considered to be a subsection of the associated chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Ramblings#Consider_Parabolic_Case|Other Analytic Ramblings]].  More specifically, in the following "Introduction," we repeat a manipulation of the LAWE that was originally developed in the subsection of that chapter titled, [[User:Tohline/SSC/Structure/Other_Analytic_Ramblings#Consider_Parabolic_Case|"Consider Parabolic Case"]].  




{{LSU_WorkInProgress}}
{{LSU_WorkInProgress}}


===Generic Setup===
==Introduction==
In the case of a parabolic density distribution, the LAWE becomes,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2x^2(5-3x^2)}{(1-x^2)(2-x^2)}  \biggl[\alpha -  \sigma^2  \biggl(5-3x^2\biggr)^{-1} + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl(\frac{x^2 \mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +4 \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~~ \frac{2}{(1-x^2)(2-x^2)}  \biggl[ \biggl( \alpha + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}\biggr)(5-3x^2) -\sigma^2 \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl(\frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +\frac{4}{x^2} \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} 
</math>
  </td>
</tr>
</table>
</div>
 
 
Let's try,
<div>
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="center">
<math>~\mathcal{G}_\sigma</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^m \, ,</math>
  </td>
</tr>
</table>
which implies,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="center">
<math>~\mathcal{G}_\sigma^'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~n(a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^m +m (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-1}(2b_2x)</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>~\Rightarrow ~~~~ \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~n(a_0 + a_2x^2)^{-1}(2a_2x^2)  +m  (b_0 + b_2x^2)^{-1}(2b_2x^2) </math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2x^2}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ n a_2 (b_0 + b_2x^2)  +mb_2  (a_0 + a_2x^2) \biggr] </math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2x^2}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ (n a_2 b_0 + mb_2 a_0)  +(na_2 b_2+ mb_2 a_2)x^2\biggr] \, ,</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="center">
<math>~\mathcal{G}_\sigma^{' '}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~n m (a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^{m-1}(2b_2x) + n(a_0 + a_2x^2)^{n-1}(2a_2) \cdot (b_0 + b_2x^2)^m  + n(n-1)(a_0 + a_2x^2)^{n-2}(2a_2x)^2 \cdot (b_0 + b_2x^2)^m </math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~+m n(a_0 + a_2x^2)^{n-1}(2a_2x)  \cdot (b_0 + b_2x^2)^{m-1}(2b_2x) +m (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-1}(2b_2)
+m(m-1) (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-2}(2b_2x)^2</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>~\Rightarrow ~~~~ \frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~8n m a_2b_2 x^2 (a_0 + a_2x^2)^{-1}\cdot (b_0 + b_2x^2)^{-1} + n2a_2 (a_0 + a_2x^2)^{-1}  + n(n-1)4a_2^2 x^2 (a_0 + a_2x^2)^{-2} 
+m2b_2 (b_0 + b_2x^2)^{-1} +m(m-1)4 b_2^2 x^2 (b_0 + b_2x^2)^{-2}</math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2n a_2(b_0 + b_2x^2) + 2m b_2  (a_0 + a_2x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}  + \biggl[ \frac{4n(n-1) a_2^2 }{ (a_0 + a_2x^2)^{2}} 
+ \frac{8n m a_2b_2}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}+ \frac{4m(m-1) b_2^2 }{(b_0 + b_2x^2)^{2}} \biggr]x^2
</math>
  </td>
</tr>
</table>
</div>
 
So, we have for the LAWE:
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
LHS
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{2}{(1-x^2)(2-x^2)}  \biggl[ \biggl( \alpha + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}\biggr)(5-3x^2) -\sigma^2 \biggr]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{2}{(1-x^2)(2-x^2)(a_0 + a_2x^2) (b_0 + b_2x^2)} 
\biggl\{ \biggl[ \alpha(a_0 + a_2x^2) (b_0 + b_2x^2) + 2x^2(n a_2 b_0 + mb_2 a_0)  + 2x^4 (na_2 b_2+ mb_2 a_2) \biggr](5-3x^2)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-\sigma^2 (a_0 + a_2x^2) (b_0 + b_2x^2) \biggr\} \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
RHS
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl(\frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +\frac{4}{x^2} \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} </math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2n a_2(b_0 + b_2x^2) + 2m b_2  (a_0 + a_2x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}  + \biggl[ \frac{4n(n-1) a_2^2 }{ (a_0 + a_2x^2)^{2}} 
+ \frac{8n m a_2b_2}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}+ \frac{4m(m-1) b_2^2 }{(b_0 + b_2x^2)^{2}} \biggr]x^2
</math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{8}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ (n a_2 b_0 + mb_2 a_0)  +(na_2 b_2+ mb_2 a_2)x^2\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{(a_0 + a_2x^2)(b_0 + b_2x^2)} \biggl\{ 2n a_2(b_0 + b_2x^2) + 2m b_2  (a_0 + a_2x^2) 
+ 8(n a_2 b_0 + mb_2 a_0)  + 8(na_2 b_2+ mb_2 a_2)x^2
</math>
  </td>
</tr>
 
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \biggl[8n m a_2b_2+ \frac{4n(n-1) a_2^2(b_0 + b_2x^2) }{ (a_0 + a_2x^2)} 
+ \frac{4m(m-1) b_2^2(a_0 + a_2x^2) }{(b_0 + b_2x^2)} \biggr]x^2
\biggr\} \, .
</math>
  </td>
</tr>
</table>
</div>
 
Putting these together gives,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~ 0
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \alpha(a_0 + a_2x^2) (b_0 + b_2x^2) + 2x^2(n a_2 b_0 + mb_2 a_0)  + 2x^4 (na_2 b_2+ mb_2 a_2) \biggr](5-3x^2)
-\sigma^2 (a_0 + a_2x^2) (b_0 + b_2x^2)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \biggl[ n a_2(b_0 + b_2x^2) + m b_2  (a_0 + a_2x^2)  + 4(n a_2 b_0 + mb_2 a_0)  + 4(na_2 b_2+ mb_2 a_2)x^2+ 4n m a_2b_2x^2
\biggr](1-x^2)(2-x^2)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \frac{(1-x^2)(2-x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}\biggl[2n(n-1) a_2^2(b_0 + b_2x^2)^2  + 2m(m-1) b_2^2(a_0 + a_2x^2)^2 \biggr]x^2 \, .
</math>
  </td>
</tr>
</table>
</div>
 





Revision as of 20:36, 22 August 2015

More General Approach to the Parabolic Eigenvalue Problem

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

The material presented in this chapter is an extension of the chapter titled, Other Analytic Models and could also be considered to be a subsection of the associated chapter titled, Other Analytic Ramblings. More specifically, in the following "Introduction," we repeat a manipulation of the LAWE that was originally developed in the subsection of that chapter titled, "Consider Parabolic Case".



Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


Introduction

In the case of a parabolic density distribution, the LAWE becomes,

<math>~\frac{2x^2(5-3x^2)}{(1-x^2)(2-x^2)} \biggl[\alpha - \sigma^2 \biggl(5-3x^2\biggr)^{-1} + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} \biggr]</math>

<math>~=</math>

<math>~ \biggl(\frac{x^2 \mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +4 \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} </math>

<math>~\Rightarrow ~~~~ \frac{2}{(1-x^2)(2-x^2)} \biggl[ \biggl( \alpha + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}\biggr)(5-3x^2) -\sigma^2 \biggr]</math>

<math>~=</math>

<math>~ \biggl(\frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +\frac{4}{x^2} \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} </math>


Let's try,

<math>~\mathcal{G}_\sigma</math>

<math>~=</math>

<math>~(a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^m \, ,</math>

which implies,

<math>~\mathcal{G}_\sigma^'</math>

<math>~=</math>

<math>~n(a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^m +m (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-1}(2b_2x)</math>

<math>~\Rightarrow ~~~~ \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}</math>

<math>~=</math>

<math>~n(a_0 + a_2x^2)^{-1}(2a_2x^2) +m (b_0 + b_2x^2)^{-1}(2b_2x^2) </math>

 

<math>~=</math>

<math>~\frac{2x^2}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ n a_2 (b_0 + b_2x^2) +mb_2 (a_0 + a_2x^2) \biggr] </math>

 

<math>~=</math>

<math>~\frac{2x^2}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ (n a_2 b_0 + mb_2 a_0) +(na_2 b_2+ mb_2 a_2)x^2\biggr] \, ,</math>

and,

<math>~\mathcal{G}_\sigma^{' '}</math>

<math>~=</math>

<math>~n m (a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^{m-1}(2b_2x) + n(a_0 + a_2x^2)^{n-1}(2a_2) \cdot (b_0 + b_2x^2)^m + n(n-1)(a_0 + a_2x^2)^{n-2}(2a_2x)^2 \cdot (b_0 + b_2x^2)^m </math>

 

 

<math>~+m n(a_0 + a_2x^2)^{n-1}(2a_2x) \cdot (b_0 + b_2x^2)^{m-1}(2b_2x) +m (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-1}(2b_2) +m(m-1) (a_0 + a_2x^2)^n \cdot (b_0 + b_2x^2)^{m-2}(2b_2x)^2</math>

<math>~\Rightarrow ~~~~ \frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}</math>

<math>~=</math>

<math>~8n m a_2b_2 x^2 (a_0 + a_2x^2)^{-1}\cdot (b_0 + b_2x^2)^{-1} + n2a_2 (a_0 + a_2x^2)^{-1} + n(n-1)4a_2^2 x^2 (a_0 + a_2x^2)^{-2} +m2b_2 (b_0 + b_2x^2)^{-1} +m(m-1)4 b_2^2 x^2 (b_0 + b_2x^2)^{-2}</math>

 

<math>~=</math>

<math>~\frac{2n a_2(b_0 + b_2x^2) + 2m b_2 (a_0 + a_2x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)} + \biggl[ \frac{4n(n-1) a_2^2 }{ (a_0 + a_2x^2)^{2}} + \frac{8n m a_2b_2}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}+ \frac{4m(m-1) b_2^2 }{(b_0 + b_2x^2)^{2}} \biggr]x^2 </math>

So, we have for the LAWE:

LHS

<math>~=</math>

<math>~ \frac{2}{(1-x^2)(2-x^2)} \biggl[ \biggl( \alpha + \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma}\biggr)(5-3x^2) -\sigma^2 \biggr]</math>

 

<math>~=</math>

<math>~ \frac{2}{(1-x^2)(2-x^2)(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl\{ \biggl[ \alpha(a_0 + a_2x^2) (b_0 + b_2x^2) + 2x^2(n a_2 b_0 + mb_2 a_0) + 2x^4 (na_2 b_2+ mb_2 a_2) \biggr](5-3x^2) </math>

 

 

<math>~ -\sigma^2 (a_0 + a_2x^2) (b_0 + b_2x^2) \biggr\} \, ;</math>

RHS

<math>~=</math>

<math>~ \biggl(\frac{\mathcal{G}_\sigma^{' '}}{\mathcal{G}_\sigma}\biggr) +\frac{4}{x^2} \cdot \frac{x \mathcal{G}_\sigma^'}{\mathcal{G}_\sigma} </math>

 

<math>~=</math>

<math>~\frac{2n a_2(b_0 + b_2x^2) + 2m b_2 (a_0 + a_2x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)} + \biggl[ \frac{4n(n-1) a_2^2 }{ (a_0 + a_2x^2)^{2}} + \frac{8n m a_2b_2}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}+ \frac{4m(m-1) b_2^2 }{(b_0 + b_2x^2)^{2}} \biggr]x^2 </math>

 

 

<math>~ + \frac{8}{(a_0 + a_2x^2) (b_0 + b_2x^2)} \biggl[ (n a_2 b_0 + mb_2 a_0) +(na_2 b_2+ mb_2 a_2)x^2\biggr] </math>

 

<math>~=</math>

<math>~\frac{1}{(a_0 + a_2x^2)(b_0 + b_2x^2)} \biggl\{ 2n a_2(b_0 + b_2x^2) + 2m b_2 (a_0 + a_2x^2) + 8(n a_2 b_0 + mb_2 a_0) + 8(na_2 b_2+ mb_2 a_2)x^2 </math>

 

 

<math>~ + \biggl[8n m a_2b_2+ \frac{4n(n-1) a_2^2(b_0 + b_2x^2) }{ (a_0 + a_2x^2)} + \frac{4m(m-1) b_2^2(a_0 + a_2x^2) }{(b_0 + b_2x^2)} \biggr]x^2 \biggr\} \, . </math>

Putting these together gives,

<math>~ 0 </math>

<math>~=</math>

<math>~ \biggl[ \alpha(a_0 + a_2x^2) (b_0 + b_2x^2) + 2x^2(n a_2 b_0 + mb_2 a_0) + 2x^4 (na_2 b_2+ mb_2 a_2) \biggr](5-3x^2) -\sigma^2 (a_0 + a_2x^2) (b_0 + b_2x^2) </math>

 

 

<math>~ - \biggl[ n a_2(b_0 + b_2x^2) + m b_2 (a_0 + a_2x^2) + 4(n a_2 b_0 + mb_2 a_0) + 4(na_2 b_2+ mb_2 a_2)x^2+ 4n m a_2b_2x^2 \biggr](1-x^2)(2-x^2) </math>

 

 

<math>~ - \frac{(1-x^2)(2-x^2)}{ (a_0 + a_2x^2)(b_0 + b_2x^2)}\biggl[2n(n-1) a_2^2(b_0 + b_2x^2)^2 + 2m(m-1) b_2^2(a_0 + a_2x^2)^2 \biggr]x^2 \, . </math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation