Difference between revisions of "User:Tohline/SSC/Structure/Other Analytic Models"
(Begin chapter to itemize other analytically definable equilibrium spherical models) |
(→Linear Density Distribution: Begin detailing properties of Stein's "linear stellar model") |
||
Line 5: | Line 5: | ||
==Linear Density Distribution== | ==Linear Density Distribution== | ||
[http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf R. F. Stein (1966)] defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is, | |||
<div align="center"> | |||
<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math> | |||
</div> | |||
where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~M_r(r)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\int_0^r 4\pi r^2 \rho(r) dr</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
in which case we can write, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~g_0 \equiv \frac{G M_r(r) \rho(r)}{r^2} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{4\pi\rho_c^2 r}{3} \biggl( 1 - \frac{r}{R} \biggr) \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Hence, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~P(r)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~P_c - \int_0^r g_0(r) dr</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\pi G\rho_c^2 R^2}{36} \biggl[5 - 24 \biggl( \frac{r}{R} \biggr)^2 | |||
+ 28 \biggl( \frac{r}{R} \biggr)^3 - 9 \biggl( \frac{r}{R} \biggr)^4 \biggr] \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, we have enforced the surface boundary condition, <math>~P(R) = 0</math>, and the central pressure is, | |||
<div align="center"> | |||
<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math> | |||
</div> | |||
==Parabolic Density Distribution== | ==Parabolic Density Distribution== |
Revision as of 23:09, 19 June 2015
Other Analytically Definable, Spherical Equilibrium Models
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Linear Density Distribution
R. F. Stein (1966) defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is,
<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>
where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically,
<math>~M_r(r)</math> |
<math>~=</math> |
<math>~\int_0^r 4\pi r^2 \rho(r) dr</math> |
|
<math>~=</math> |
<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, ,</math> |
in which case we can write,
<math>~g_0 \equiv \frac{G M_r(r) \rho(r)}{r^2} </math> |
<math>~=</math> |
<math>~\frac{4\pi\rho_c^2 r}{3} \biggl( 1 - \frac{r}{R} \biggr) \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, .</math> |
Hence,
<math>~P(r)</math> |
<math>~=</math> |
<math>~P_c - \int_0^r g_0(r) dr</math> |
|
<math>~=</math> |
<math>~\frac{\pi G\rho_c^2 R^2}{36} \biggl[5 - 24 \biggl( \frac{r}{R} \biggr)^2 + 28 \biggl( \frac{r}{R} \biggr)^3 - 9 \biggl( \frac{r}{R} \biggr)^4 \biggr] \, ,</math> |
where, we have enforced the surface boundary condition, <math>~P(R) = 0</math>, and the central pressure is,
<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math>
Parabolic Density Distribution
© 2014 - 2021 by Joel E. Tohline |