Difference between revisions of "User:Tohline/SSC/Stability BoundedCompositePolytropes"
(→Together: Fix error in final expression) |
(→Unbounded, Complete Polytropes: Write stability condition for unbounded polytropes) |
||
Line 226: | Line 226: | ||
= \frac{4\pi}{(n+1)^n} \cdot \xi_1^{-(n+1)} (-\Theta_H^')^{1-n}_{\xi_1} \, . | = \frac{4\pi}{(n+1)^n} \cdot \xi_1^{-(n+1)} (-\Theta_H^')^{1-n}_{\xi_1} \, . | ||
</math> | </math> | ||
</div> | |||
===Stability=== | |||
The procedure that has been used to obtain a detailed force-balanced model of unbounded polytropes cannot readily be extended to provide a stability analysis of such systems. However, the free-energy analysis can be readily extended. If the first derivative of the free-energy function is zero — that is, if you have identified an equilibrium configuration — and the second derivative of the free-energy function for that configuration is ''positive'', then the equilibrium system is dynamically stable. If, however, the second derivative is ''negative'', then the equilibrium system is dynamically unstable. | |||
Using the expression for the second derivative of the free-energy function [[User:Tohline/SSC/Stability_BoundedCompositePolytropes#Free-Energy_Function_and_Its_Derivatives|derived above]], we deduce that equilibrium configurations are ''dynamically unstable'' when, | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl[\frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} - 2a \biggr]_{x_\mathrm{eq}} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~<</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
~0 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~~ x_\mathrm{eq}^{(n-3)/n} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~<</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
~\frac{2an^2}{3(3+n)b} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~~ \frac{an}{3b} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~<</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
~\frac{2an^2}{3(3+n)b} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~~ n </math> | |||
</td> | |||
<td align="center"> | |||
<math>~></math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
~3 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
Revision as of 22:23, 24 March 2015
Instabilities in Bounded and Composite Polytropes
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Unbounded, Complete Polytropes
Free-Energy Function and Its Derivatives
The free-energy function that is relevant to a discussion of the structure and stability of unbounded configurations having polytropic index, <math>~n</math>, has the form,
<math>~\mathcal{G}(x)</math> |
<math>~=</math> |
<math> -ax^{-1} +b x^{-3/n} + \mathcal{G}_0 \, , </math> |
where <math>~x \equiv R/R_\mathrm{SWS}</math> identifies the radius of the configuration and <math>\mathcal{G}_0</math> is an arbitrary constant. If the coefficients, <math>~a, b</math>, and <math>~c</math>, are held constant while varying the configuration's size, we see that,
<math>~\frac{d\mathcal{G}}{dx}</math> |
<math>~=</math> |
<math> x^{-2} \biggl[ a - \frac{3b}{n}\cdot x^{(n-3)/n} \biggr] \, , </math> |
and,
<math>~\frac{d^2\mathcal{G}}{dx^2}</math> |
<math>~=</math> |
<math> x^{-3} \biggl[ -2a + \frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} \biggr] \, . </math> |
In terms of the system's mass and its structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_A</math>, and <math>~\mathfrak{f}_W</math>, the two relevant coefficients are,
<math>~a</math> |
<math>~=</math> |
<math>~\frac{3}{5}\biggl(\frac{n+1}{n}\biggr) \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^2 \mathfrak{f}_W \, ,</math> |
<math>~b</math> |
<math>~=</math> |
<math>~n \biggl( \frac{3}{4\pi}\biggr)^{1/n} \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^{(n+1)/n} \mathfrak{f}_A \, . </math> |
Equilibrium Radius
A configuration's equilibrium radius, <math>~x_\mathrm{eq}</math>, can be determined one of two ways:
Extrema in the Free Energy
Equilibria are identified by extrema in the free-energy function. Setting <math>d\mathcal{G}/dx = 0</math>, we find,
<math>~x_\mathrm{eq}</math> |
<math>~=</math> |
<math> \biggl(\frac{an}{3b} \biggr)^{n/(n-3)} </math> |
<math>~\Rightarrow ~~~~~ R_\mathrm{eq}^{n-3}</math> |
<math>~=</math> |
<math>\frac{R_\mathrm{SWS}^{n-3}}{M_\mathrm{SWS}^{n-1}} \biggl( \frac{4\pi}{3\cdot 5^n}\biggr) \biggl(\frac{n+1}{n}\biggr)^n \biggl[ \frac{\mathfrak{f}_W^n \mathfrak{f}_M^{1-n}}{\mathfrak{f}_A^n} \biggr] M^{n-1} </math> |
|
<math>~=</math> |
<math>\biggl( \frac{4\pi}{3\cdot 5^n}\biggr) \biggl[ \frac{\mathfrak{f}_W^n \mathfrak{f}_M^{1-n}}{\mathfrak{f}_A^n} \biggr] G^n K^{-n} M^{n-1} \, . </math> |
If one assumes that the equilibrium system has no internal structure — that is, that the interior density and temperature are uniform throughout — then <math>~\mathfrak{f}_M = \mathfrak{f}_A = \mathfrak{f}_W = 1</math> and this derived expression gives a good estimate of the equilibrium radius, given any choice of the pair of parameters, <math>~M</math> and <math>~K</math>.
Detailed Force Balance
Alternatively, a solution of the,
Lane-Emden Equation
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math> |
gives information regarding the detailed interior structure of the equilibrium system via knowledge of the properties of the Lane-Emden function, <math>~\Theta_H(\xi)</math>, as well as an exact expression for the equilibrium radius, namely,
<math>~R_\mathrm{eq}^{n-3} = \frac{3^n}{(n+1)^n} \biggl(\frac{4\pi}{3}\biggr) G^n K^{-n} M^{n-1} \cdot \frac{\mathfrak{f}_M^{1-n}}{\xi_1^{2n}} \, , </math>
where,
<math>~\mathfrak{f}_M \equiv \frac{\bar\rho}{\rho_c} = \biggl(- \frac{3\Theta_H^'}{\xi} \biggr)_{\xi_1} \, .</math>
Together
Now, once the Lane-Emden function, <math>~\Theta_H</math>, is known from a detailed force-balance model, the other two structural form factors also can be straightforwardly determined. For unbounded, complete polytropes, the relevant expressions are,
<math>~\mathfrak{f}_W</math> |
<math>~=</math> |
<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta_H^'}{\xi} \biggr]^2_{\xi_1} \, ,</math> |
<math>~\mathfrak{f}_A</math> |
<math>~=</math> |
<math>~\frac{3(n+1) }{(5-n)} ~\biggl[ \Theta_H^' \biggr]^2_{\xi_1} \, .</math> |
Plugging the appropriate ratio of these two functions, namely,
<math>~\biggl[\frac{\mathfrak{f}_W}{\mathfrak{f}_A} \biggr]^n</math> |
<math>~=</math> |
<math>~\biggl( \frac{3\cdot 5}{n+1} \biggr)^n \biggl[ \frac{1}{\xi} \biggr]^{2n}_{\xi_1} \, ,</math> |
into the expression for the equilibrium radius obtained from the free-energy analysis gives precisely the same answer as was obtained from the detailed force-balance analysis. Using either method of determination we conclude, therefore, that,
<math>~\frac{K^n R_\mathrm{eq}^{n-3}}{G^n M^{n-1}} = \frac{4\pi}{(n+1)^n} \cdot \xi_1^{-(n+1)} (-\Theta_H^')^{1-n}_{\xi_1} \, . </math>
Stability
The procedure that has been used to obtain a detailed force-balanced model of unbounded polytropes cannot readily be extended to provide a stability analysis of such systems. However, the free-energy analysis can be readily extended. If the first derivative of the free-energy function is zero — that is, if you have identified an equilibrium configuration — and the second derivative of the free-energy function for that configuration is positive, then the equilibrium system is dynamically stable. If, however, the second derivative is negative, then the equilibrium system is dynamically unstable.
Using the expression for the second derivative of the free-energy function derived above, we deduce that equilibrium configurations are dynamically unstable when,
<math>~\biggl[\frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} - 2a \biggr]_{x_\mathrm{eq}} </math> |
<math>~<</math> |
<math> ~0 </math> |
<math>~\Rightarrow ~~~~~ x_\mathrm{eq}^{(n-3)/n} </math> |
<math>~<</math> |
<math> ~\frac{2an^2}{3(3+n)b} </math> |
<math>~\Rightarrow ~~~~~ \frac{an}{3b} </math> |
<math>~<</math> |
<math> ~\frac{2an^2}{3(3+n)b} </math> |
<math>~\Rightarrow ~~~~~ n </math> |
<math>~></math> |
<math> ~3 \, . </math> |
Related Discussions
- Constructing BiPolytropes
- Analytic description of BiPolytrope with <math>(n_c, n_e) = (5,1)</math>
- Bonnor-Ebert spheres
- Schönberg-Chandrasekhar limiting mass
- Relationship between Bonnor-Ebert and Schönberg-Chandrasekhar limiting masses
- Wikipedia introduction to the Lane-Emden equation
- Wikipedia introduction to Polytropes
© 2014 - 2021 by Joel E. Tohline |