Difference between revisions of "User:Tohline/SSC/Stability BoundedCompositePolytropes"
(Begin new section titled "Instabilities in Bounded and Composite Polytropes") |
(→Instabilities in Bounded and Composite Polytropes: Begin typing text for unbounded structures) |
||
Line 5: | Line 5: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
== | ==Unbounded, Complete Polytropes== | ||
=== | ===Free-Energy Function and Its Derivatives=== | ||
The free-energy function that is relevant to a discussion of the structure and stability of unbounded configurations having polytropic index, <math>~n</math>, has the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{G}(x)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
-ax^{-1} +b x^{-3/n} + \mathcal{G}_0 | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where <math>~x \equiv R/R_\mathrm{SWS}</math> identifies the radius of the configuration and <math>\mathcal{G}_0</math> is an arbitrary constant. If the coefficients, <math>~a, b</math>, and <math>~c</math>, are held constant while varying the configuration's size, we see that, | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\mathcal{G}}{dx}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
x^{-2} \biggl[ a - \frac{3b}{n}\cdot x^{(n-3)/n} \biggr] | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
and, | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2\mathcal{G}}{dx^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
x^{-3} \biggl[ -2a + \frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} \biggr] | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
In terms of the system's mass and its [[User:Tohline/SSC/Virial/PolytropesEmbedded/SecondEffortAgain#Structural_Form_Factors|structural form factors]], <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_A</math>, and <math>~\mathfrak{f}_W</math>, the two relevant coefficients are, | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math>~a</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{3}{5}\biggl(\frac{n+1}{n}\biggr) \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^2 | |||
\mathfrak{f}_W \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~b</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~n \biggl( \frac{3}{4\pi}\biggr)^{1/n} \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^{(n+1)/n} | |||
\mathfrak{f}_A \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
===Equilibrium Radius=== | |||
A configuration's equilibrium radius, <math>~x_\mathrm{eq}</math>, can be determined one of two ways: | |||
====Extrema in the Free Energy==== | |||
Equilibria are identified by extrema in the free-energy function. Setting <math>d\mathcal{G}/dx = 0</math>, we find, | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_\mathrm{eq}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\biggl(\frac{an}{3b} \biggr)^{n/(n-3)} | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
=Related Discussions= | =Related Discussions= |
Revision as of 01:05, 24 March 2015
Instabilities in Bounded and Composite Polytropes
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Unbounded, Complete Polytropes
Free-Energy Function and Its Derivatives
The free-energy function that is relevant to a discussion of the structure and stability of unbounded configurations having polytropic index, <math>~n</math>, has the form,
<math>~\mathcal{G}(x)</math> |
<math>~=</math> |
<math> -ax^{-1} +b x^{-3/n} + \mathcal{G}_0 \, , </math> |
where <math>~x \equiv R/R_\mathrm{SWS}</math> identifies the radius of the configuration and <math>\mathcal{G}_0</math> is an arbitrary constant. If the coefficients, <math>~a, b</math>, and <math>~c</math>, are held constant while varying the configuration's size, we see that,
<math>~\frac{d\mathcal{G}}{dx}</math> |
<math>~=</math> |
<math> x^{-2} \biggl[ a - \frac{3b}{n}\cdot x^{(n-3)/n} \biggr] \, , </math> |
and,
<math>~\frac{d^2\mathcal{G}}{dx^2}</math> |
<math>~=</math> |
<math> x^{-3} \biggl[ -2a + \frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} \biggr] \, . </math> |
In terms of the system's mass and its structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_A</math>, and <math>~\mathfrak{f}_W</math>, the two relevant coefficients are,
<math>~a</math> |
<math>~=</math> |
<math>~\frac{3}{5}\biggl(\frac{n+1}{n}\biggr) \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^2 \mathfrak{f}_W \, ,</math> |
<math>~b</math> |
<math>~=</math> |
<math>~n \biggl( \frac{3}{4\pi}\biggr)^{1/n} \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^{(n+1)/n} \mathfrak{f}_A \, . </math> |
Equilibrium Radius
A configuration's equilibrium radius, <math>~x_\mathrm{eq}</math>, can be determined one of two ways:
Extrema in the Free Energy
Equilibria are identified by extrema in the free-energy function. Setting <math>d\mathcal{G}/dx = 0</math>, we find,
<math>~x_\mathrm{eq}</math> |
<math>~=</math> |
<math> \biggl(\frac{an}{3b} \biggr)^{n/(n-3)} \, , </math> |
Related Discussions
- Constructing BiPolytropes
- Analytic description of BiPolytrope with <math>(n_c, n_e) = (5,1)</math>
- Bonnor-Ebert spheres
- Schönberg-Chandrasekhar limiting mass
- Relationship between Bonnor-Ebert and Schönberg-Chandrasekhar limiting masses
- Wikipedia introduction to the Lane-Emden equation
- Wikipedia introduction to Polytropes
© 2014 - 2021 by Joel E. Tohline |