Difference between revisions of "User:Tohline/SSC/Perspective Reconciliation"
Line 91: | Line 91: | ||
<td align="left"> | <td align="left"> | ||
<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho}{\partial r}</math> | <math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho}{\partial r}</math> | ||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
</td> | |||
</tr> | |||
<!-- EXPLAIN PERTURBATION VARIABLE CHOICES --> | |||
<tr> | |||
<td align="left" colspan="2"> | |||
In an interval of time, <math>~dt = \partial t</math>, a fluid element initially at position <math>~r_0</math> moves to position, <math>~r = r_0 + \xi</math>. On the righthand side of the expression, the radial coordinate will be handled as follows: From the Lagrangian perspective, <math>~r \rightarrow (r_0 + \xi)</math>, while from the Eulerian perspective, we want to stay at the original coordinate location, so <math>~r \rightarrow r_0</math>. From both perspectives, | |||
<div align="center"><math>~v_r = \frac{\partial\xi}{\partial t} \, .</math></div> | |||
Riding with the fluid element (Lagrangian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_L) = \rho_0(1+s_L)</math>, while at a fixed coordinate location (Eulerian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_E) + \rho_0(1 + s_E)</math>. | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d}{dt}\biggl[\rho_0(1+s_L)\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{\rho_0(1+s_L)}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr)</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
</td> | |||
<td align="center"> | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial}{\partial t}\biggl[\rho_0(1+s_E)\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{\rho_0(1+s_E)}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho_0(1+s_E)}{\partial r}</math> | |||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 02:00, 12 December 2014
Reconciling Eulerian versus Lagrangian Perspectives
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Linearizing the Key Relations
Continuity Equation | |||||||
---|---|---|---|---|---|---|---|
Lagrangian Perspective | Eulerian Perspective | ||||||
|
|
||||||
Spherically Symmetric Initial Configurations & Purely Radial Perturbations | |||||||
|
|
||||||
In an interval of time, <math>~dt = \partial t</math>, a fluid element initially at position <math>~r_0</math> moves to position, <math>~r = r_0 + \xi</math>. On the righthand side of the expression, the radial coordinate will be handled as follows: From the Lagrangian perspective, <math>~r \rightarrow (r_0 + \xi)</math>, while from the Eulerian perspective, we want to stay at the original coordinate location, so <math>~r \rightarrow r_0</math>. From both perspectives, <math>~v_r = \frac{\partial\xi}{\partial t} \, .</math>
Riding with the fluid element (Lagrangian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_L) = \rho_0(1+s_L)</math>, while at a fixed coordinate location (Eulerian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_E) + \rho_0(1 + s_E)</math>. |
|||||||
|
|