Difference between revisions of "User:Tohline/Apps/GoldreichWeber80"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Dimensionless Normalization: Finished normalization subsection)
(→‎Introduction: Begin explaining homologous solution)
Line 1: Line 1:
=Homologously Collapsing Stellar Cores=
=Homologously Collapsing Stellar Cores=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
==Introduction==
==Review of Goldreich and Weber (1980)==
This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores.   
This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores.   


Line 75: Line 75:
</table>
</table>
</div>
</div>
Goldreich &amp; Weber also realize that, because the flow is vorticity free, the velocity can be obtained from a stream function, <math>~\Psi</math>, via the relation,
Goldreich &amp; Weber also realize that, because the flow is vorticity free, the velocity can be obtained from a stream function, <math>~\psi</math>, via the relation,
<div align="center">
<div align="center">
<math>~\vec{v} = \nabla\Psi \, .</math>
<math>~\vec{v} = \nabla\psi \, .</math>
</div>
</div>
Hence, the Euler equation becomes,
Hence, the Euler equation becomes,
Line 84: Line 84:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \Psi}{\partial t} </math>
<math>~\frac{\partial \psi}{\partial t} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 90: Line 90:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~ \biggl[ H + \Phi + \frac{1}{2}\biggl( \nabla \Psi \biggr)^2 \biggr] \, ,</math>
<math>~-~ \biggl[ H + \Phi + \frac{1}{2}\biggl( \nabla \psi \biggr)^2 \biggr] \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
where, <math>~H</math>, <math>~\Phi</math>, and <math>~\Psi</math> are each functions only of the radial coordinate.
where, <math>~H</math>, <math>~\Phi</math>, and <math>~\psi</math> are each functions only of the radial coordinate and time.


===Dimensionless Normalization===
===Dimensionless Normalization===
Line 129: Line 129:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla\psi - \dot{a} \vec{x}) \cdot \frac{\nabla\rho}{\rho}
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}
  + a^{-2} \nabla^2\psi </math>
  + a^{-2} \nabla_x^2\psi </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 142: Line 142:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla\psi + \frac{1}{2} a^{-2} | \nabla\psi|^2  
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2  
+ H + \Phi</math>
+ H + \Phi</math>
   </td>
   </td>
Line 156: Line 156:
   <td align="right">
   <td align="right">
<math>~
<math>~
a^{-2} \nabla^2\Phi - 4\pi G \rho
a^{-2} \nabla_x^2\Phi - 4\pi G \rho
</math>
</math>
   </td>
   </td>
Line 172: Line 172:
<math>~\vec{x} \equiv \frac{\vec{r}}{a} \, ,</math>
<math>~\vec{x} \equiv \frac{\vec{r}}{a} \, ,</math>
</div>
</div>
and it is understood that derivatives in the <math>~\nabla</math> and <math>~\nabla^2</math> operators are taken with respect to the dimensionless radius, <math>~x</math>.
and it is understood that derivatives in the <math>~\nabla_x</math> and <math>~\nabla_x^2</math> operators are taken with respect to the dimensionless radial coordinate, <math>~x</math>.
</td></tr>
</td></tr>


Line 179: Line 179:
</td></tr>
</td></tr>
</table>
</table>


Next, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
Next, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
Line 194: Line 195:
= \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1}  \, .</math>
= \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1}  \, .</math>
</div>
</div>
Specifically, their time-varying dimensionless gravitational potential is,
Specifically, their dimensionless gravitational potential is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 216: Line 217:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial\ln{f^3}}{\partial t}</math>
<math>~\frac{\partial}{\partial t} \biggl[ \ln \biggl(\frac{f}{a} \biggr)^3 \biggr]</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 222: Line 223:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~ a^{-1}(a^{-1} \nabla\psi - \dot{a} \vec{x}) \cdot \nabla(\ln f^3)
<math>~-~ a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \nabla_x(\ln f^3)
  - a^{-2} \nabla^2\psi \, ;</math>
  - a^{-2} \nabla_x^2\psi \, ;</math>
   </td>
   </td>
</tr>
</tr>
Line 234: Line 235:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla\psi + \frac{1}{2} a^{-2} | \nabla\psi|^2</math>
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 253: Line 254:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla^2\sigma</math>
<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla_x^2\sigma</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 265: Line 266:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~\nabla^2\sigma</math>
<math>~\Rightarrow~~~~\nabla_x^2\sigma</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 278: Line 279:


===Homologous Solution===
===Homologous Solution===
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{2}a \dot{a} x^2 \, ,</math>
  </td>
</tr>
</table>
</div>
which generates a radial velocity profile,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\vec{v} = a^{-1}\nabla_x \psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\hat{e}_x a^{-1} \biggl[ \frac{\partial}{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr]  = \dot{a} \vec{x} \, .
</math>
  </td>
</tr>
</table>
</div>
Recognizing, as well, that,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~a^{-2} \nabla_x^2 \psi </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{(ax)^2} \frac{\partial}{\partial x} \biggl[ x^2\frac{\partial }{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl( \frac{\dot{a}}{a} \biggr) \frac{1}{x^2}
\frac{\partial}{\partial x} \biggl[ x^3\biggr] = \frac{3\dot{a}}{a} = \frac{d\ln a^3}{dt} \, ,</math>
  </td>
</tr>
</table>
</div>
the continuity equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial \ln f^3}{\partial t}  - \frac{d \ln a^3}{dt} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{d \ln a^3}{dt} </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{\partial \ln f^3}{\partial t} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0 \, ,</math>
  </td>
</tr>
</table>
</div>
that is, the dimensionless density profile, <math>~f</math>, is independent of time.


=Related Discussions=
=Related Discussions=

Revision as of 17:03, 3 September 2014

Homologously Collapsing Stellar Cores

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review of Goldreich and Weber (1980)

This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores.

Governing Equations

Goldreich & Weber begin with the identical set of principal governing equations that serves as the foundation for all of the discussions throughout this H_Book. In particular, as is documented by their equation (1), their adopted equation of state is adiabatic/polytropic,

<math>~P = \kappa \rho^\gamma \, ,</math>

— where both <math>~\kappa</math> and <math>~\gamma</math> are constants — and therefore satisfies what we have referred to as the

Adiabatic Form of the
First Law of Thermodynamics

(Specific Entropy Conservation)

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math> .


their equation (2) is what we have referred to as the

Eulerian Representation
or
Conservative Form
of the Continuity Equation,

<math>~\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0</math>

their equation (3) is what we have referred to as the

Euler Equation
in terms of the Vorticity,

<math>~\frac{\partial\vec{v}}{\partial t} + \vec\zeta \times \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi + \frac{1}{2}v^2 \biggr] </math>

where, <math>~\vec\zeta \equiv \nabla\times \vec{v}</math> is the fluid vorticity; and their equation (4) is the

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

Tweaking the set of principal governing equations, as we have written them, to even more precisely match equations (1) - (4) in Goldreich & Weber (1980), we should replace the state variable <math>~P</math> (pressure) with <math>~H</math> (enthalpy), keeping in mind that, <math>~\gamma = 1 + 1/n</math>, and, as presented in our introductory discussion of barotropic supplemental relations,

<math>~H = \biggl( \frac{\gamma}{\gamma-1} \biggr) \kappa \rho^{\gamma-1} \, ,</math>

and,

<math>~\nabla H = \frac{\nabla P}{\rho} \, .</math>

Imposed Constraints

Goldreich & Weber (1980) specifically choose to examine the spherically symmetric collapse of a <math>~\gamma = 4/3</math> fluid. With this choice of adiabatic index, the equation of state becomes,

<math>~H = 4 \kappa \rho^{1/3} \, .</math>

And because a strictly radial flow-field exhibits no vorticity (i.e., <math>\vec\zeta = 0</math>), the Euler equation can be rewritten as,

<math>~\frac{\partial v_r}{\partial t} </math>

<math>~=</math>

<math>~-~ \nabla_r \biggl[ H + \Phi + \frac{1}{2}v^2 \biggr] \, .</math>

Goldreich & Weber also realize that, because the flow is vorticity free, the velocity can be obtained from a stream function, <math>~\psi</math>, via the relation,

<math>~\vec{v} = \nabla\psi \, .</math>

Hence, the Euler equation becomes,

<math>~\frac{\partial \psi}{\partial t} </math>

<math>~=</math>

<math>~-~ \biggl[ H + \Phi + \frac{1}{2}\biggl( \nabla \psi \biggr)^2 \biggr] \, ,</math>

where, <math>~H</math>, <math>~\Phi</math>, and <math>~\psi</math> are each functions only of the radial coordinate and time.

Dimensionless Normalization

In their investigation, Goldreich & Weber (1980) chose the same length scale for normalization that is used in deriving the Lane-Emden equation, which governs the hydrostatic structure of a polytrope of index <math>~n</math>, that is,

<math> a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>

where the subscript, "c", denotes central values. In this case <math>~(n = 3)</math>, substitution of the equation of state expression for <math>~H_c</math> leads to,

<math> a(t) = \rho_c^{-1/3} \biggl(\frac{\kappa}{\pi G}\biggr)^{1/2} \, . </math>

Quite significantly, Goldreich & Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution. This, in turn, will mean that either the central density varies with time, or the specific entropy of all fluid elements (captured by the value of <math>~\kappa</math>) varies with time, or both. In practice, Goldreich & Weber assume that <math>~\kappa</math> is held fixed, so the time-variation in the scale length, <math>~a</math>, reflects a time-varying central density; specifically,

<math> \rho_c = \biggl(\frac{\kappa}{\pi G}\biggr)^{3/2} [a(t)]^{-3} \, . </math>


Goldreich & Weber's (1980) Governing Equations After Initial Length Scaling (yet to be demonstrated)

<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}

+ a^{-2} \nabla_x^2\psi </math>

<math>~=</math>

<math>~0</math>

<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2 + H + \Phi</math>

<math>~=</math>

<math>~0</math>

<math>~ a^{-2} \nabla_x^2\Phi - 4\pi G \rho </math>

<math>~=</math>

<math>~0</math>

where,

<math>~\vec{x} \equiv \frac{\vec{r}}{a} \, ,</math>

and it is understood that derivatives in the <math>~\nabla_x</math> and <math>~\nabla_x^2</math> operators are taken with respect to the dimensionless radial coordinate, <math>~x</math>.


Next, Goldreich & Weber (1980) (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,

<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>

Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,

<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>

Finally, Goldreich & Weber (1980) (see their equation 11) normalize the gravitational potential to the square of the central sound speed,

<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3} = \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1} \, .</math>

Specifically, their dimensionless gravitational potential is,

<math>~\sigma</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, .</math>

With these additional scalings, the continuity equation becomes,

<math>~\frac{\partial}{\partial t} \biggl[ \ln \biggl(\frac{f}{a} \biggr)^3 \biggr]</math>

<math>~=</math>

<math>~-~ a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \nabla_x(\ln f^3)

- a^{-2} \nabla_x^2\psi \, ;</math>

the Euler equation becomes,

<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2</math>

<math>~=</math>

<math>~ - a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma) \, ;</math>

and the Poisson equation becomes,

<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla_x^2\sigma</math>

<math>~=</math>

<math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math>

<math>~\Rightarrow~~~~\nabla_x^2\sigma</math>

<math>~=</math>

<math>~3 f^3 \, .</math>

Homologous Solution

Goldreich & Weber (1980) discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,

<math>~\psi</math>

<math>~=</math>

<math>~\frac{1}{2}a \dot{a} x^2 \, ,</math>

which generates a radial velocity profile,

<math>~\vec{v} = a^{-1}\nabla_x \psi</math>

<math>~=</math>

<math>~\hat{e}_x a^{-1} \biggl[ \frac{\partial}{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] = \dot{a} \vec{x} \, . </math>

Recognizing, as well, that,

<math>~a^{-2} \nabla_x^2 \psi </math>

<math>~=</math>

<math>~\frac{1}{(ax)^2} \frac{\partial}{\partial x} \biggl[ x^2\frac{\partial }{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] </math>

 

<math>~=</math>

<math>~ \biggl( \frac{\dot{a}}{a} \biggr) \frac{1}{x^2} \frac{\partial}{\partial x} \biggl[ x^3\biggr] = \frac{3\dot{a}}{a} = \frac{d\ln a^3}{dt} \, ,</math>

the continuity equation becomes,

<math>~\frac{\partial \ln f^3}{\partial t} - \frac{d \ln a^3}{dt} </math>

<math>~=</math>

<math>~- \frac{d \ln a^3}{dt} </math>

<math>~\Rightarrow ~~~ \frac{\partial \ln f^3}{\partial t} </math>

<math>~=</math>

<math>~0 \, ,</math>

that is, the dimensionless density profile, <math>~f</math>, is independent of time.

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation