Difference between revisions of "User:Tohline/Apps/GoldreichWeber80"
(→Dimensionless Normalization: More normalization derivations) |
(→Dimensionless Normalization: Finished normalization subsection) |
||
Line 234: | Line 234: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \psi}{\partial t} </math> | <math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla\psi + \frac{1}{2} a^{-2} | \nabla\psi|^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 240: | Line 240: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma) | |||
\, ;</math> | \, ;</math> | ||
</td> | </td> | ||
Line 248: | Line 247: | ||
</table> | </table> | ||
</div> | </div> | ||
and the Poisson equation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{ | <math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla^2\sigma</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 267: | Line 259: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 274: | Line 265: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\Rightarrow~~~~\nabla^2\sigma</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 280: | Line 271: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~3 f^3 \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | </div> | ||
===Homologous Solution=== | ===Homologous Solution=== |
Revision as of 15:57, 3 September 2014
Homologously Collapsing Stellar Cores
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Introduction
This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores.
Governing Equations
Goldreich & Weber begin with the identical set of principal governing equations that serves as the foundation for all of the discussions throughout this H_Book. In particular, as is documented by their equation (1), their adopted equation of state is adiabatic/polytropic,
<math>~P = \kappa \rho^\gamma \, ,</math>
— where both <math>~\kappa</math> and <math>~\gamma</math> are constants — and therefore satisfies what we have referred to as the
Adiabatic Form of the
First Law of Thermodynamics
(Specific Entropy Conservation)
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math> .
their equation (2) is what we have referred to as the
Eulerian Representation
or
Conservative Form
of the Continuity Equation,
<math>~\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0</math>
their equation (3) is what we have referred to as the
Euler Equation
in terms of the Vorticity,
<math>~\frac{\partial\vec{v}}{\partial t} + \vec\zeta \times \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi + \frac{1}{2}v^2 \biggr] </math>
where, <math>~\vec\zeta \equiv \nabla\times \vec{v}</math> is the fluid vorticity; and their equation (4) is the
Tweaking the set of principal governing equations, as we have written them, to even more precisely match equations (1) - (4) in Goldreich & Weber (1980), we should replace the state variable <math>~P</math> (pressure) with <math>~H</math> (enthalpy), keeping in mind that, <math>~\gamma = 1 + 1/n</math>, and, as presented in our introductory discussion of barotropic supplemental relations,
<math>~H = \biggl( \frac{\gamma}{\gamma-1} \biggr) \kappa \rho^{\gamma-1} \, ,</math>
and,
<math>~\nabla H = \frac{\nabla P}{\rho} \, .</math>
Imposed Constraints
Goldreich & Weber (1980) specifically choose to examine the spherically symmetric collapse of a <math>~\gamma = 4/3</math> fluid. With this choice of adiabatic index, the equation of state becomes,
<math>~H = 4 \kappa \rho^{1/3} \, .</math>
And because a strictly radial flow-field exhibits no vorticity (i.e., <math>\vec\zeta = 0</math>), the Euler equation can be rewritten as,
<math>~\frac{\partial v_r}{\partial t} </math> |
<math>~=</math> |
<math>~-~ \nabla_r \biggl[ H + \Phi + \frac{1}{2}v^2 \biggr] \, .</math> |
Goldreich & Weber also realize that, because the flow is vorticity free, the velocity can be obtained from a stream function, <math>~\Psi</math>, via the relation,
<math>~\vec{v} = \nabla\Psi \, .</math>
Hence, the Euler equation becomes,
<math>~\frac{\partial \Psi}{\partial t} </math> |
<math>~=</math> |
<math>~-~ \biggl[ H + \Phi + \frac{1}{2}\biggl( \nabla \Psi \biggr)^2 \biggr] \, ,</math> |
where, <math>~H</math>, <math>~\Phi</math>, and <math>~\Psi</math> are each functions only of the radial coordinate.
Dimensionless Normalization
In their investigation, Goldreich & Weber (1980) chose the same length scale for normalization that is used in deriving the Lane-Emden equation, which governs the hydrostatic structure of a polytrope of index <math>~n</math>, that is,
<math> a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>
where the subscript, "c", denotes central values. In this case <math>~(n = 3)</math>, substitution of the equation of state expression for <math>~H_c</math> leads to,
<math> a(t) = \rho_c^{-1/3} \biggl(\frac{\kappa}{\pi G}\biggr)^{1/2} \, . </math>
Quite significantly, Goldreich & Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution. This, in turn, will mean that either the central density varies with time, or the specific entropy of all fluid elements (captured by the value of <math>~\kappa</math>) varies with time, or both. In practice, Goldreich & Weber assume that <math>~\kappa</math> is held fixed, so the time-variation in the scale length, <math>~a</math>, reflects a time-varying central density; specifically,
<math> \rho_c = \biggl(\frac{\kappa}{\pi G}\biggr)^{3/2} [a(t)]^{-3} \, . </math>
Goldreich & Weber's (1980) Governing Equations After Initial Length Scaling (yet to be demonstrated) | ||||||||||||
|
Next, Goldreich & Weber (1980) (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>
Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
Finally, Goldreich & Weber (1980) (see their equation 11) normalize the gravitational potential to the square of the central sound speed,
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3} = \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1} \, .</math>
Specifically, their time-varying dimensionless gravitational potential is,
<math>~\sigma</math> |
<math>~\equiv</math> |
<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, .</math> |
With these additional scalings, the continuity equation becomes,
<math>~\frac{\partial\ln{f^3}}{\partial t}</math> |
<math>~=</math> |
<math>~-~ a^{-1}(a^{-1} \nabla\psi - \dot{a} \vec{x}) \cdot \nabla(\ln f^3) - a^{-2} \nabla^2\psi \, ;</math> |
the Euler equation becomes,
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla\psi + \frac{1}{2} a^{-2} | \nabla\psi|^2</math> |
<math>~=</math> |
<math>~ - a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma) \, ;</math> |
and the Poisson equation becomes,
<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla^2\sigma</math> |
<math>~=</math> |
<math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math> |
<math>~\Rightarrow~~~~\nabla^2\sigma</math> |
<math>~=</math> |
<math>~3 f^3 \, .</math> |
Homologous Solution
Related Discussions
© 2014 - 2021 by Joel E. Tohline |