Difference between revisions of "User:Tohline/Apps/GoldreichWeber80"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Introduction: Begin discussing normalizations)
Line 99: Line 99:
===Dimensionless Normalization===
===Dimensionless Normalization===


In their investigation, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] chose the same length scale for normalization that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], which governs the hydrostatic structure of a polytrope of index {{ User:Tohline/Math/MP_PolytropicIndex }}, that is,
<div align="center">
<math>
a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2}  \, ,
</math>
</div>
where the subscript, "c", denotes central values.  In this case <math>~(n = 3)</math>, substitution of the equation of state expression for <math>~H_c</math> leads to,
<div align="center">
<math>
a(t) = \rho_c^{-1/3} \biggl(\frac{\kappa}{\pi G}\biggr)^{1/2} \, ,
</math>
</div>
and, ''quite significantly'', Goldreich &amp; Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution.


===Homologous Solution===
===Homologous Solution===

Revision as of 20:08, 1 September 2014

Homologously Collapsing Stellar Cores

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Introduction

This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores.

Governing Equations

Goldreich & Weber begin with the identical set of principal governing equations that serves as the foundation for all of the discussions throughout this H_Book. In particular, as is documented by their equation (1), their adopted equation of state is adiabatic/polytropic,

<math>~P = \kappa \rho^\gamma \, ,</math>

— where both <math>~\kappa</math> and <math>~\gamma</math> are constants — and therefore satisfies what we have referred to as the

Adiabatic Form of the
First Law of Thermodynamics

(Specific Entropy Conservation)

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math> .


their equation (2) is what we have referred to as the

Eulerian Representation
or
Conservative Form
of the Continuity Equation,

<math>~\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0</math>

their equation (3) is what we have referred to as the

Euler Equation
in terms of the Vorticity,

<math>~\frac{\partial\vec{v}}{\partial t} + \vec\zeta \times \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi + \frac{1}{2}v^2 \biggr] </math>

where, <math>~\vec\zeta \equiv \nabla\times \vec{v}</math> is the fluid vorticity; and their equation (4) is the

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

Tweaking the set of principal governing equations, as we have written them, to even more precisely match equations (1) - (4) in Goldreich & Weber (1980), we should replace the state variable <math>~P</math> (pressure) with <math>~H</math> (enthalpy), keeping in mind that, <math>~\gamma = 1 + 1/n</math>, and, as presented in our introductory discussion of barotropic supplemental relations,

<math>~H = \biggl( \frac{\gamma}{\gamma-1} \biggr) \kappa \rho^{\gamma-1} \, ,</math>

and,

<math>~\nabla H = \frac{\nabla P}{\rho} \, .</math>

Imposed Constraints

Goldreich & Weber (1980) specifically choose to examine the spherically symmetric collapse of a <math>~\gamma = 4/3</math> fluid. With this choice of adiabatic index, the equation of state becomes,

<math>~H = 4 \kappa \rho^{1/3} \, .</math>

And because a strictly radial flow-field exhibits no vorticity (i.e., <math>\vec\zeta = 0</math>), the Euler equation can be rewritten as,

<math>~\frac{\partial v_r}{\partial t} </math>

<math>~=</math>

<math>~-~ \nabla_r \biggl[ H + \Phi + \frac{1}{2}v^2 \biggr] \, .</math>

Goldreich & Weber also realize that, because the flow is vorticity free, the velocity can be obtained from a stream function, <math>~\Psi</math>, via the relation,

<math>~\vec{v} = \nabla\Psi \, .</math>

Hence, the Euler equation becomes,

<math>~\frac{\partial \Psi}{\partial t} </math>

<math>~=</math>

<math>~-~ \biggl[ H + \Phi + \frac{1}{2}\biggl( \nabla \Psi \biggr)^2 \biggr] \, ,</math>

where, <math>~H</math>, <math>~\Phi</math>, and <math>~\Psi</math> are each functions only of the radial coordinate.

Dimensionless Normalization

In their investigation, Goldreich & Weber (1980) chose the same length scale for normalization that is used in deriving the Lane-Emden equation, which governs the hydrostatic structure of a polytrope of index <math>~n</math>, that is,

<math> a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>

where the subscript, "c", denotes central values. In this case <math>~(n = 3)</math>, substitution of the equation of state expression for <math>~H_c</math> leads to,

<math> a(t) = \rho_c^{-1/3} \biggl(\frac{\kappa}{\pi G}\biggr)^{1/2} \, , </math>

and, quite significantly, Goldreich & Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution.

Homologous Solution

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation