Difference between revisions of "User:Tohline/PGE/Hybrid Scheme"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Hybrid Scheme: Begin new introductory section that explains more fully how to move to noninertial frames of reference)
(→‎Setting the Stage: More discussion of rotating frames)
Line 26: Line 26:
where we are using <math>~\vec{v}</math> to represent the velocity field of the fluid as viewed from an ''inertial frame of reference'', and the total (as opposed to partial) time derivative indicates the time-rate of change of <math>~\psi</math> is being measured in a so-called ''Lagrangian'' fashion, that is, at the location of some fluid element and ''moving along with'' that fluid element.   
where we are using <math>~\vec{v}</math> to represent the velocity field of the fluid as viewed from an ''inertial frame of reference'', and the total (as opposed to partial) time derivative indicates the time-rate of change of <math>~\psi</math> is being measured in a so-called ''Lagrangian'' fashion, that is, at the location of some fluid element and ''moving along with'' that fluid element.   


When we encounter a situation in which the so-called "source" term, <math>~S</math>, on the right-hand side is zero, we will be able to identify the scalar variable, <math>~\psi</math>, as the volume density of some conserved quantity.  For example, the continuity equation &#8212; which is a mathematical statement of mass conservation &#8212; has the form,
When we encounter a situation in which the "source" term, <math>~S</math>, on the right-hand side is zero, we will be able to identify the scalar variable, <math>~\psi</math>, as the volume density of some conserved quantity.  For example, the continuity equation &#8212; which is a mathematical statement of mass conservation &#8212; has the form,
<div align="center">
<div align="center">
<table border="0" cellpadding="3">
<table border="0" cellpadding="3">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
{{ User:Tohline/Math/EQ_Continuity01}}
\frac{d\rho}{dt} + \rho\nabla\cdot \vec{v}
</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
0 \, ,
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 62: Line 52:
</table>
</table>
</div>
</div>
where, <math>~\rho</math> is the mass per unit volume or, simply, the mass density of the fluid element.  Clearly, when mass is conserved, the mass density of each Lagrangian fluid element changes only in accordance with the divergence of the local velocity field.  
where, <math>~\rho</math> is the mass per unit volume or, simply, the mass density of the fluid element.  Clearly, when the mass of a Lagrangian fluid element is conserved, the fluid element's mass density changes only in accordance with the divergence of the local velocity field.  


Similarly, if we are following the evolution of a fluid that expands and contracts adiabatically, we should expect to encounter an equation of the form,  
Similarly, if we are following the evolution of a fluid that expands and contracts adiabatically, we should expect to encounter an equation of the form,  
Line 100: Line 90:
</table>
</table>
</div>
</div>
where, <math>~s</math> is the entropy density of each Lagrantian fluid element.  Or, if an axisymmetric distribution of fluid is moving in an axisymmetric potential, we should expect the azimuthal component of the fluid's angular momentum to be conserved, in which case we should expect to encounter a dynamical equation of the form,
where, <math>~s</math> is the entropy density of a Lagrangian fluid element.  Or, if an axisymmetric distribution of fluid is moving in an axisymmetric potential, we should expect the azimuthal component of the fluid's angular momentum to be conserved, in which case we should expect to encounter a dynamical equation of the form,
<div align="center">
<div align="center">
<table border="0" cellpadding="3">
<table border="0" cellpadding="3">
Line 106: Line 96:
   <td align="right">
   <td align="right">
<math>
<math>
\frac{d(\rho R v_\phi)}{dt} + (\rho R v_\phi) \nabla\cdot \vec{v}
\frac{d(\rho \varpi v_\phi)}{dt} + (\rho \varpi v_\phi) \nabla\cdot \vec{v}
</math>
</math>
   </td>
   </td>
Line 120: Line 110:
</table>
</table>
</div>
</div>
where, <math>~R</math> is the Lagrantian fluid element's (cylindrical radial) distance measured from the symmetry axis of the underlying potential and <math>~v_\phi = R\dot\phi</math> is the azimuthal component of the inertial velocity field, <math>~\vec{v}</math>, at the location of the fluid element.
where, <math>~\varpi</math> is the Lagrangian fluid element's (cylindrical radial) distance measured from the symmetry axis of the underlying potential and <math>~v_\phi = \varpi\dot\phi</math> is the azimuthal component of the inertial velocity field, <math>~\vec{v}</math>, at the location of the fluid element.


===Non-Inertial Reference Frames===
===Non-Inertial Reference Frames===


Now, we might want to examine the time-dependent behavior of a distributed fluid system while viewing the flow from a reference frame that is more or less moving along with the fluid.  This new frame of reference need not be an inertial frame; for example, when studying a rotating fluid, we may want to view the system's evolution from a rotating frame of reference.  This will be accomplished mathematically by adjusting the dynamical equations so that the velocity that appears in the divergence term accounts for the new "frame" velocity field; specifically, we want,
Now, we might want to examine the time-dependent behavior of a distributed fluid system while viewing the flow from a reference frame that is more or less moving along with the fluid.  This new frame of reference need not be an inertial frame; for example, when studying a rotating fluid, we may want to view the system's evolution from a rotating frame of reference.  This will be accomplished mathematically by adjusting the dynamical equations so that the velocity that appears in the divergence term accounts for the new "frame" velocity field; specifically, we want to replace <math>~\vec{v}</math> with,
<div align="center">
<div align="center">
<table border="0" cellpadding="3">
<table border="0" cellpadding="3">
Line 130: Line 120:
   <td align="right">
   <td align="right">
<math>
<math>
\vec{v}
\vec{v}_\mathrm{new}  
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\rightarrow~</math>
<math>~=~</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\vec{v}_\mathrm{new} = \vec{v} + \vec{v}_\mathrm{frame} \, .
\vec{v} + \vec{v}_\mathrm{frame} \, .
</math>
</math>
   </td>
   </td>
Line 144: Line 134:
</table>
</table>
</div>
</div>
Of course, the introduction of <math>~\vec{v}_\mathrm{new}</math> must be done in such a way that the entire equation is exactly the sameBut if <math>~\vec{v}_\mathrm{frame}</math> is a divergence-free velocity field, then the replacement is trivial; one need only recognize, after the replacement, that the other terms mean "as viewed from the new frame."
(Here, we will consider only time-independent functional expressions for the frame velocity, <math>~\vec{v}_\mathrm{frame}</math>.) Of course, the introduction of <math>~\vec{v}_\mathrm{new}</math> must be done in such a way that the resulting, new PDE describes exactly the same physical behavior of the system as was described by the original equation; that is, the new equation must be derivable from the original one.


If <math>~\vec{v}_\mathrm{frame}</math> is a divergence-free velocity field, then the replacement is trivial.  For example, if we choose a frame of reference that is rotating uniformly with angular velocity, <math>~\Omega_0</math>, then,
<div align="center">
<table border="0" cellpadding="3">
<tr>
  <td align="right">
<math>
\vec{v}_\mathrm{frame}
</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
\boldsymbol{\hat{e}}_\phi (\varpi \Omega_0) \, ,
</math>
  </td>
</tr>
</table>
</div>
and, utilizing cylindrical coordinates,
<div align="center">
<table border="0" cellpadding="3">
<tr>
  <td align="right">
<math>
\nabla\cdot\vec{v}_\mathrm{frame}
</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
\frac{\partial(0)}{\partial \varpi} + \frac{1}{\varpi}\frac{\partial(\varpi \Omega_0)}{\partial \phi}
+ \frac{\partial(0)}{\partial z} = 0 \, .
</math>
  </td>
</tr>
</table>
</div>
Hence,
<div align="center">
<table border="0" cellpadding="3">
<tr>
  <td align="right">
<math>
\frac{d\psi}{dt} + \psi \nabla\cdot \vec{v}_\mathrm{frame}
</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
\frac{d\psi}{dt} + \psi \nabla\cdot [\vec{v} + \vec{v}_\mathrm{frame}]
</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
\frac{d\psi}{dt} + \psi \nabla\cdot \vec{v} \, ,
</math>
  </td>
</tr>
</table>
</div>
so we can be confident that the new PDE represents the physics of the system just as well as the original PDE.


appropriately replacing modifying the <math>~\nabla\cdot\vec{v}</math> term in the dynamical equations so that, in the the velocity, <math>~\vec{v}</math>, in the divergence term
one need only recognize, after the replacement, that the other terms mean "as viewed from the new frame."




appropriately replacing modifying the <math>~\nabla\cdot\vec{v}</math> term in the dynamical equations so that, in the the velocity, <math>~\vec{v}</math>, in the divergence term


==Traditional Eulerian Representation (Review)==
==Traditional Eulerian Representation (Review)==

Revision as of 15:54, 28 February 2014

Hybrid Scheme

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Setting the Stage

Recognizing Statements of Conservation

When dealing with the compressible fluid equations, we will often encounter hyperbolic PDEs of the following form:

<math> \frac{d\psi}{dt} + \psi \nabla\cdot \vec{v} </math>

<math>~=~</math>

<math> S \, , </math>

where we are using <math>~\vec{v}</math> to represent the velocity field of the fluid as viewed from an inertial frame of reference, and the total (as opposed to partial) time derivative indicates the time-rate of change of <math>~\psi</math> is being measured in a so-called Lagrangian fashion, that is, at the location of some fluid element and moving along with that fluid element.

When we encounter a situation in which the "source" term, <math>~S</math>, on the right-hand side is zero, we will be able to identify the scalar variable, <math>~\psi</math>, as the volume density of some conserved quantity. For example, the continuity equation — which is a mathematical statement of mass conservation — has the form,

LSU Key.png

<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math>

      or, equivalently,      

<math> \frac{d\ln\rho}{dt} </math>

<math>~=~</math>

<math> ~- \nabla\cdot \vec{v} \, , </math>

where, <math>~\rho</math> is the mass per unit volume or, simply, the mass density of the fluid element. Clearly, when the mass of a Lagrangian fluid element is conserved, the fluid element's mass density changes only in accordance with the divergence of the local velocity field.

Similarly, if we are following the evolution of a fluid that expands and contracts adiabatically, we should expect to encounter an equation of the form,

<math> \frac{ds}{dt} + s\nabla\cdot \vec{v} </math>

<math>~=~</math>

<math> 0 \, , </math>

      or, equivalently,      

<math> \frac{d\ln s}{dt} </math>

<math>~=~</math>

<math> ~- \nabla\cdot \vec{v} \, , </math>

where, <math>~s</math> is the entropy density of a Lagrangian fluid element. Or, if an axisymmetric distribution of fluid is moving in an axisymmetric potential, we should expect the azimuthal component of the fluid's angular momentum to be conserved, in which case we should expect to encounter a dynamical equation of the form,

<math> \frac{d(\rho \varpi v_\phi)}{dt} + (\rho \varpi v_\phi) \nabla\cdot \vec{v} </math>

<math>~=~</math>

<math> 0 \, , </math>

where, <math>~\varpi</math> is the Lagrangian fluid element's (cylindrical radial) distance measured from the symmetry axis of the underlying potential and <math>~v_\phi = \varpi\dot\phi</math> is the azimuthal component of the inertial velocity field, <math>~\vec{v}</math>, at the location of the fluid element.

Non-Inertial Reference Frames

Now, we might want to examine the time-dependent behavior of a distributed fluid system while viewing the flow from a reference frame that is more or less moving along with the fluid. This new frame of reference need not be an inertial frame; for example, when studying a rotating fluid, we may want to view the system's evolution from a rotating frame of reference. This will be accomplished mathematically by adjusting the dynamical equations so that the velocity that appears in the divergence term accounts for the new "frame" velocity field; specifically, we want to replace <math>~\vec{v}</math> with,

<math> \vec{v}_\mathrm{new} </math>

<math>~=~</math>

<math> \vec{v} + \vec{v}_\mathrm{frame} \, . </math>

(Here, we will consider only time-independent functional expressions for the frame velocity, <math>~\vec{v}_\mathrm{frame}</math>.) Of course, the introduction of <math>~\vec{v}_\mathrm{new}</math> must be done in such a way that the resulting, new PDE describes exactly the same physical behavior of the system as was described by the original equation; that is, the new equation must be derivable from the original one.

If <math>~\vec{v}_\mathrm{frame}</math> is a divergence-free velocity field, then the replacement is trivial. For example, if we choose a frame of reference that is rotating uniformly with angular velocity, <math>~\Omega_0</math>, then,

<math> \vec{v}_\mathrm{frame} </math>

<math>~=~</math>

<math> \boldsymbol{\hat{e}}_\phi (\varpi \Omega_0) \, , </math>

and, utilizing cylindrical coordinates,

<math> \nabla\cdot\vec{v}_\mathrm{frame} </math>

<math>~=~</math>

<math> \frac{\partial(0)}{\partial \varpi} + \frac{1}{\varpi}\frac{\partial(\varpi \Omega_0)}{\partial \phi} + \frac{\partial(0)}{\partial z} = 0 \, . </math>

Hence,

<math> \frac{d\psi}{dt} + \psi \nabla\cdot \vec{v}_\mathrm{frame} </math>

<math>~=~</math>

<math> \frac{d\psi}{dt} + \psi \nabla\cdot [\vec{v} + \vec{v}_\mathrm{frame}] </math>

<math>~=~</math>

<math> \frac{d\psi}{dt} + \psi \nabla\cdot \vec{v} \, , </math>

so we can be confident that the new PDE represents the physics of the system just as well as the original PDE.

one need only recognize, after the replacement, that the other terms mean "as viewed from the new frame."


appropriately replacing modifying the <math>~\nabla\cdot\vec{v}</math> term in the dynamical equations so that, in the the velocity, <math>~\vec{v}</math>, in the divergence term

Traditional Eulerian Representation (Review)

Here we review the traditional Eulerian representation of the Euler Equation, as has been discussed in detail earlier.

in terms of velocity:

The so-called "Eulerian form" of the Euler equation can be straightforwardly derived from the standard Lagrangian representation to obtain,

Eulerian Representation
of the Euler Equation,

<math>~\frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot \nabla) \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \Phi</math>

in terms of momentum density:

Also, we can multiply this expression through by <math>~\rho</math> and combine it with the continuity equation to derive what is commonly referred to as the,

Conservative Form
of the Euler Equation,

<math>~\frac{\partial(\rho\vec{v})}{\partial t} + \nabla\cdot [(\rho\vec{v})\vec{v}]= - \nabla P - \rho \nabla \Phi</math>

The second term on the left-hand-side of this last expression represents the divergence of the "dyadic product" of the vector momentum density (<math>~\rho</math><math>~\vec{v}</math>) and the velocity vector <math>~\vec{v}</math> and is sometimes written as, <math>\nabla\cdot [(\rho \vec{v}) \otimes \vec{v}]</math>.

Component Forms

Let's split the vector Euler equation into its three scalar components; various examples are identified in Table 1.

Example #

Grid

Momentum Vector

Basis

Rotating?

Basis

Frame

1

Cartesian

No

Cartesian

Inertial

2

Cylindrical

Yes <math>~(\Omega_0)</math>

Cylindrical

Rotating <math>~(\Omega_0)</math>

3

Cylindrical

Yes <math>~(\Omega_0)</math>

Cylindrical

Rotating <math>~(\omega_0)</math>

In the following expressions, we will use <math>~\vec{v}</math> to denote the fluid velocity when it is associated with the rate of fluid transport across the coordinate grid, and we will use <math>~\vec{u}</math> to denote the fluid velocity when it is associated with the momentum density that is being advected. In all cases, it should be understood that <math>~\vec{v} = \vec{u}</math>, as both vectors refer to the same fluid velocity. In addition, we will use a "prime" notation to indicate when a velocity is being viewed from a rotating frame of reference; specifically, we will consider rotation about the <math>~z</math>-axis of the coordinate system, that is,

<math>~v'_\phi</math>

<math>~=~</math>

<math>~v_\phi - R\Omega_0 \, ,</math>

and,

<math>~u'_\phi</math>

<math>~=~</math>

<math>~u_\phi - R\omega_0 \, ,</math>

but we will not insist that the two rotation frequencies, <math>~\Omega_0</math> and <math>~\omega_0</math>, have the same value. Hence, in general, <math>~(\vec{u})' \ne (\vec{v})'</math>. It is worth emphasizing that, because we will only be considering frame rotation about the <math>z</math>-axis, the cylindrical <math>R</math> and <math>z</math> components of the velocity are interchangeable, that is: <math>~u'_R = v'_R = u_R = v_R</math>; and <math>~u'_z = v'_z = u_z = v_z</math>.

Example #1

This is certainly the most familiar component set.

<math>\boldsymbol{\hat{e}}_x: ~~~\frac{\partial (\rho v_x)}{\partial t} + \nabla\cdot[(\rho v_x) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial x} - \rho \frac{\partial \Phi}{\partial x} \, , </math>

<math>\boldsymbol{\hat{e}}_y: ~~~\frac{\partial (\rho v_y)}{\partial t} + \nabla\cdot[(\rho v_y) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial y} - \rho \frac{\partial \Phi}{\partial y} \, , </math>

<math>\boldsymbol{\hat{e}}_z: ~~~\frac{\partial (\rho v_z)}{\partial t} + \nabla\cdot[(\rho v_z) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial z} - \rho \frac{\partial \Phi}{\partial z} \, , </math>

where, for any one of the three scalar PDEs, advection of the relevant component of the momentum density, <math>~\psi_i</math>, is handled via the operation,

<math> \nabla\cdot[\psi_{i} \vec{v} ] </math>

<math>~=~</math>

<math> \frac{\partial (\psi_i v_x)}{\partial x} + \frac{\partial (\psi_i v_y)}{\partial y} + \frac{\partial (\psi_i v_z)}{\partial z} \, . </math>

Example #2

This component set has been spelled out in, for example, equations (5) - (7) of Norman & Wilson (1978) and equations (11), (12), & (3) of New & Tohline (1997).

<math>\boldsymbol{\hat{e}}_R: ~~~~~~~\frac{\partial (\rho v_R)}{\partial t} + \nabla\cdot[(\rho v_R) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{(\rho R v_\phi)^2}{\rho R^3} + \rho\Omega_0^2 R + \frac{2\Omega_0 (\rho R v_\phi)}{R} \, , </math>

 

<math>~=~</math>

<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{\rho}{R} (v_\phi + R\Omega_0)^2 \, , </math>

<math>\boldsymbol{\hat{e}}_\phi: ~~~\frac{\partial (\rho R v_\phi)}{\partial t} + \nabla\cdot[(\rho R v_\phi) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial \phi} - \rho \frac{\partial \Phi}{\partial \phi} - 2\rho (\Omega_0 R )v_R \, , </math>

<math>\boldsymbol{\hat{e}}_z: ~~~~~~~~\frac{\partial (\rho v_z)}{\partial t} + \nabla\cdot[(\rho v_z) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial z} - \rho \frac{\partial \Phi}{\partial z} \, , </math>

where, as noted above,

<math> \nabla\cdot[\psi_{i} \vec{v} ] </math>

<math>~=~</math>

<math> \frac{\partial (\psi_i v_R)}{\partial R} + \frac{1}{R} \frac{\partial (\psi_i v_\phi)}{\partial\phi} + \frac{\partial (\psi_i v_z)}{\partial z} \, . </math>

Example #3

<math>~\boldsymbol{\hat{e}}_R:</math>

<math>~\frac{\partial (\rho u'_R)}{\partial t} + \nabla\cdot[\rho u'_R (\vec{v})'~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{\rho}{R} (v'_\phi + R\Omega_0)^2 </math>

 

 

<math>~=~</math>

<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{\rho (v'_\phi)^2}{R} + 2\rho \Omega_0 v'_\phi + \rho \Omega_0^2 R \, , </math>

<math>~\boldsymbol{\hat{e}}_\phi:</math>

<math>~\frac{\partial \{\rho R [u'_\phi + R(\Omega_0 - \omega_0)]\} }{\partial t} + \nabla\cdot[ \{ \rho R [u'_\phi + R(\Omega_0 - \omega_0)] \} (\vec{v})'~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial \phi} - \rho \frac{\partial \Phi}{\partial \phi} - 2\rho R\omega_0 v'_R \, , </math>

<math>~\boldsymbol{\hat{e}}_z:</math>

<math>~\frac{\partial (\rho u'_z)}{\partial t} + \nabla\cdot[\rho u'_z (\vec{v})'~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial z} - \rho \frac{\partial \Phi}{\partial z} \, , </math>

where, as noted above,

<math>~u'_\phi</math>

<math>~=~</math>

<math>~u_\phi - R\omega_0 \, ,</math>

and, for any one of the three scalar PDEs, advection of the relevant component of the momentum density, <math>~\psi_i</math>, is handled via the operation,

<math> \nabla\cdot[\psi_{i} (\vec{v})' ] </math>

<math>~=~</math>

<math> \frac{\partial (\psi_i v'_R)}{\partial R} + \frac{1}{R} \frac{\partial (\psi_i v'_\phi)}{\partial\phi} + \frac{\partial (\psi_i v'_z)}{\partial z} </math>

 

<math>~=~</math>

<math> \frac{\partial (\psi_i v_R)}{\partial R} + \frac{1}{R} \frac{\partial [\psi_i (v_\phi - R\Omega_0)]}{\partial\phi} + \frac{\partial (\psi_i v_z)}{\partial z} \, . </math>

Related Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation