Difference between revisions of "User:Tohline/SSC/VirialStability"

From VistrailsWiki
Jump to navigation Jump to search
(→‎BiPolytrope: Redefine subsections to make discussion easier to follow)
(→‎Virial Analysis: Finish derivation of stability condition)
Line 368: Line 368:
<div align="center">
<div align="center">
<math>
<math>
\frac{\partial\mathfrak{G}}{\partial \chi} = A \chi^{-2} -\frac{3}{n_c} B_c \chi^{-(1+3/n_c)} -\frac{3}{n_e} B_e \chi^{-(1+3/n_e)} \, ;
\frac{\partial\mathfrak{G}}{\partial \chi} = A \chi^{-2} -(1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi^{-(1+3/n_c)}
- \delta_{\infty n_c} B_I \chi^{-1} -\frac{3}{n_e} B_e \chi^{-(1+3/n_e)} \, ;
</math>
</math>


<math>
<math>
\frac{\partial^2\mathfrak{G}}{\partial \chi^2} = -2 A \chi^{-3} + \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi^{-(2+3/n_c)}  
\frac{\partial^2\mathfrak{G}}{\partial \chi^2} = -2 A \chi^{-3} + (1-\delta_{\infty n_c}) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi^{-(2+3/n_c)}  
+ \frac{3}{n_e} \biggl(1+\frac{3}{n_e}\biggr) B_e \chi^{-(2+3/n_e)} \, .
+ \delta_{\infty n_c} B_I \chi^{-2} + \frac{3}{n_e} \biggl(1+\frac{3}{n_e}\biggr) B_e \chi^{-(2+3/n_e)} \, .
</math>
</math>
</div>
</div>
Line 391: Line 392:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{3}{n_c} B_c \chi_E^{-(1+3/n_c)} +\frac{3}{n_e} B_e \chi_e^{-(1+3/n_e)}
(1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi_E^{-1- 3/n_c)}
+\delta_{\infty n_c} B_I \chi_E^{-1} +\frac{3}{n_e} B_e \chi_E^{-1-3/n_e)}
</math>
</math>
   </td>
   </td>
Line 399: Line 401:
   <td align="right">
   <td align="right">
<math>
<math>
\Rightarrow ~~~~~ \alpha
\Rightarrow ~~~~~ \frac{n_e A}{3B_e}
</math>
</math>
   </td>
   </td>
Line 405: Line 407:
   <td align="left">
   <td align="left">
<math>
<math>
\chi_E^{1-3/n_c} +\beta \chi_E^{1-3/n_e}
(1-\delta_{\infty n_c}) \frac{n_e B_c}{n_c B_e} \chi_E^{1- 3/n_c}  
+\delta_{\infty n_c} \frac{n_e B_I}{3B_e} \chi_E + \chi_E^{1-3/n_e}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>
\Rightarrow ~~~~~ \chi_E^{1-3/n_e}
</math>
  </td>
  <td align="center"><math>=</math></td>
  <td align="left">
<math>
\alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \, ,
</math>
</math>
   </td>
   </td>
Line 414: Line 431:
where,
where,
<div align="center">
<div align="center">
<math>\alpha \equiv \frac{n_c A}{3B_c} \, ;</math>
<math>\alpha \equiv \frac{n_e A}{3B_e} \, ; ~~~ \beta \equiv \frac{n_e B_c}{n_c B_e} \, ; ~~~ \beta_I \equiv \frac{n_e B_I}{3B_e} \, .</math>  
 
<math>\beta \equiv \frac{n_c B_e}{n_e B_c} \, .</math>
</div>
Note that for the isothermal case (<math>n_c = \infty</math> in the above exponents),
<div align="center">
<math>\alpha \equiv \frac{A}{B_c} \, ;</math>
 
<math>\beta \equiv \frac{3 B_e}{n_e B_c} \, .</math>
</div>
</div>


==Stability==
==Stability==
And at this equilibrium radius, the second derivative of the free energy has the value,
At this equilibrium radius, the second derivative of the free energy has the value,
<div align="center">
<div align="center">
<table border="0" cellpadding="5">
<table border="0" cellpadding="5">
Line 432: Line 441:
   <td align="right">
   <td align="right">
<math>
<math>
\chi_E^3 \biggl( \frac{n_c}{3B_c} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E
\chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E
</math>
</math>
   </td>
   </td>
Line 442: Line 451:
   <td align="left">
   <td align="left">
<math>
<math>
-2 \alpha + \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c}  
-2 A\biggl( \frac{n_e}{3B_e} \biggr)  + (1-\delta_{\infty n_c}) \biggl( \frac{n_e}{3B_e} \biggr) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi_E^{1-3/n_c}  
+ \biggl(1+\frac{3}{n_e}\biggr) \beta \chi_E^{1-3/n_e} \, ,
+ \delta_{\infty n_c} \biggl( \frac{n_e}{3B_e} \biggr) B_I \chi_E + \frac{3}{n_e}\biggl( \frac{n_e}{3B_e} \biggr)  \biggl(1+\frac{3}{n_e}\biggr) B_e \chi_E^{1-3/n_e}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="right">
<math>
=
</math>
  </td>
  <td align="left">
<math>
-2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c}
+ \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \chi_E^{1-3/n_e} \, ,
</math>
</math>
   </td>
   </td>
Line 456: Line 482:
   <td align="right">
   <td align="right">
<math>
<math>
\chi_E^3 \biggl( \frac{n_c}{3B_c} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E
\chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E
</math>
</math>
   </td>
   </td>
Line 466: Line 492:
   <td align="left">
   <td align="left">
<math>
<math>
-2 \alpha + \biggl(1+\frac{3}{n_e}\biggr) \beta \chi_E^{1-3/n_e}  
-2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c}  
+ \biggl(1+\frac{3}{n_c}\biggr) \biggl[  \alpha - \beta \chi_E^{1-3/n_e} \biggr]  
+ \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \biggl[  \alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \biggr]  
</math>
</math>
   </td>
   </td>
Line 483: Line 509:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl(\frac{3}{n_c} - 1\biggr) \alpha  + 3\beta \biggl(\frac{1}{n_e} - \frac{1}{n_c}\biggr) \chi_E^{1-3/n_e}
\alpha \biggl(\frac{3}{n_e}-1\biggr) + (1-\delta_{\infty n_c}) \beta \biggl(\frac{3}{n_c}-\frac{3}{n_e}\biggr) \chi_E^{1-3/n_c}
-  \delta_{\infty n_c} \beta_I \biggl(\frac{3}{n_e}\biggr)\chi_E
</math>
</math>
   </td>
   </td>
Line 491: Line 518:
   <td align="right">
   <td align="right">
<math>
<math>
\Rightarrow ~~~~~ \chi_E^3 \biggl( \frac{n_e n_c^2}{3B_c} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E
\Rightarrow ~~~~ \chi_E^3 \biggl( \frac{n_e^2}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E
</math>
</math>
   </td>
   </td>
Line 501: Line 528:
   <td align="left">
   <td align="left">
<math>
<math>
n_e (3- n_c) \alpha  + 3\beta (n_c - n_e) \chi_E^{1-3/n_e}   
\alpha (3-n_e) - (1-\delta_{\infty n_c}) 3\beta \biggl(1 - \frac{n_e}{n_c} \biggr) \chi_E^{1-3/n_c} - \delta_{\infty n_c} 3\beta_I \chi_E \, .
</math>
</math>
   </td>
   </td>
Line 508: Line 535:
</table>
</table>
</div>
</div>
Finally, the equilibrium configuration is stable as long as this second derivative is positive, that is, for,
 
Finally, the equilibrium configuration is stable as long as this second derivative is positive.  Hence, for a bipolytrope with an
isothermal core (<math>\delta_{\infty n_c} = 1</math>), the configuration is stable as long as,
<div align="center">
<div align="center">
<math>
<math>
\chi_E^{3/n_e-1} <  \frac{3\beta (n_c - n_e) }{n_e (n_c- 3) \alpha} = \frac{3\beta (1- n_e/n_c) }{n_e (1- 3/n_c) \alpha} \, .
\chi_E <  \frac{\alpha (3-n_e)}{3\beta_I} \, .
</math>
</math>
</div>
</div>
In the adiabatic case (<math>\delta_{\infty n_c} = 0</math>), the configuration is stable as long as,
<div align="center">
<math>
\chi_E^{1-3/n_c} <  \frac{\alpha n_c (3-n_e)}{3\beta (n_c-n_e)} \, .
</math>
</div>


==Examples==
==Examples==

Revision as of 01:46, 14 October 2013


Virial Stability of BiPolytropes

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

BiPolytrope

[Following a discussion that Tohline had with Kundan Kadam on 3 July 2013, we have decided to carry out a virial equilibrium and stability analysis of nonrotating bipolytropes.]

We will adopt the following approach:

  • Properties of the core <math>\cdots</math>
    • Uniform density, <math>\rho_c</math>;
    • Polytropic constant, <math>K_c</math>, and polytropic index, <math>n_c</math>;
    • Surface of the core at <math>r_i</math>;
  • Properties of the envelope <math>\cdots</math>
    • Uniform density, <math>\rho_e</math>;
    • Polytropic constant, <math>K_e</math>, and polytropic index, <math>n_e</math>;
    • Base of the core at <math>r_i</math> and surface at <math>R</math>.

Use the dimensionless radius,

<math>\xi \equiv \frac{r}{r_i}</math>.

Then, <math>\xi_i = 1</math> and <math>\xi_s \equiv R/r_i</math>.

Expressions for Mass

Inside the core, the expression for the mass interior to any radius, <math>0 \le \xi \le 1</math>, is,

<math>M_\xi = \frac{4\pi}{3} \rho_c r_i^3 \xi^3</math> .

The expression for the mass interior to any position within the envelope, <math>1 \le \xi \le \xi_s</math>, is,

<math>M_\xi = \frac{4\pi}{3} r_i^3 \biggl[\rho_c + \rho_e(\xi^3 - 1) \biggr]</math> .

Hence, the mass of the core, the mass of the envelope, and the total mass are, respectively,

<math>M_\mathrm{core} = \frac{4\pi}{3} \rho_c r_i^3 = M_0 \biggl[ \frac{\rho_c}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr]</math>   <math>\Rightarrow</math>    <math>\frac{\rho_c}{\rho_0} = \frac{M_\mathrm{core}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3}</math>  ;

<math>M_\mathrm{env} = \frac{4\pi}{3} r_i^3 \biggl[\rho_e (\xi_s^3 - 1) \biggr] = M_0 (\xi_s^3 - 1) \biggl[ \frac{\rho_e}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr]</math>   <math>\Rightarrow</math>    <math>\frac{\rho_e}{\rho_0} = \frac{M_\mathrm{env}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3} (\xi_s^3 - 1)^{-1}</math> ;

<math>M_\mathrm{tot} = \frac{4\pi}{3} r_i^3 \biggl[\rho_c + \rho_e(\xi_s^3 - 1) \biggr] = M_0 \biggl( \frac{\rho_c}{\rho_0} \biggr) \biggl( \frac{r_i}{R_0}\biggr)^3 \biggl[ 1 + \frac{\rho_e}{\rho_c} (\xi_s^3 - 1) \biggr] </math> ;

where, <math>M_0 \equiv 4\pi \rho_0 R_0^3/3</math>. Letting <math>\nu \equiv M_\mathrm{core}/M_\mathrm{tot}</math> — which also means, <math>M_\mathrm{env}/M_\mathrm{tot} = (1-\nu) </math> — we can write,

<math>\frac{\rho_e}{\rho_c} = \frac{M_\mathrm{env}}{M_\mathrm{core}} (\xi_s^3 - 1)^{-1} = \frac{(1-\nu)}{\nu (\xi_s^3 - 1)} </math> ,

and,

<math>\nu (\xi_s^3 - 1) \biggl( \frac{\rho_e}{\rho_c} \biggr) = (1-\nu) </math>    <math>\Rightarrow</math>    <math>\nu = \biggl[ 1 + \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^3 - 1) \biggr]^{-1}</math> .

Following the work of Schönberg & Chandrasekhar (1942) — see our accompanying discussion — we are seeking equilibrium configurations in the <math>\nu - q</math> plane where,

<math>\nu</math>

<math>\equiv</math>

<math>\frac{M_\mathrm{core}}{M_\mathrm{tot}} </math>,      (as also defined here)

<math>q</math>

<math>\equiv</math>

<math>\frac{r_i}{R} = \frac{1}{\xi_s}</math> .

So we can rewrite the above expression as,

<math>\nu = \biggl[ 1 + \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1}{q^3} - 1\biggr) \biggr]^{-1}</math> ,

or,

<math>\frac{\rho_e}{\rho_c} = \biggl[ \frac{1}{\nu} - 1 \biggr] \biggl(\frac{1}{q^3} - 1\biggr)^{-1} = \frac{q^3}{\nu}\biggl( \frac{1 - \nu}{1- q^3} \biggr) \, . </math>

The following figure shows how <math>\nu</math> varies with <math>q</math> for various choices of the mass density ratio, <math>\rho_e/\rho_c</math>. It illustrates that, for a given core-to-total mass ratio, <math>\nu</math>, the relative location of the interface radius, <math>q</math>, can vary between zero and one, but each value of <math>q</math> reflects a different ratio of envelope-to-core mass density.

Nu versus Q

Energy Expressions

The gravitational potential energy of the bipolytropic configuration is obtained by integrating over the following differential energy contribution,

<math>dW = - \biggl( \frac{GM_r}{r} \biggr) dm</math> .

Hence,

<math>W = W_\mathrm{core} + W_\mathrm{env}</math>

<math> = - G \biggl\{ \int_0^{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_c dr + \int^R_{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_e dr \biggr\} </math>

 

<math> = - G \biggl\{ \int_0^1 \biggl( \frac{4\pi }{3} \rho_c r_i^3 \xi^3 \biggr) 4\pi r_i^2 \rho_c \xi d\xi + \int_1^{\xi_s} \frac{4\pi}{3} \rho_c r_i^3 \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] 4\pi r_i^2 \rho_e \xi d\xi \biggr\} </math>

 

<math> = - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \int_0^1 \xi^4 d\xi + \int_1^{\xi_s} \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] \biggl( \frac{\rho_e}{\rho_c} \biggr) \xi d\xi \biggr\} </math>

 

<math> = - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \frac{1}{5} + \biggl( \frac{\rho_e}{\rho_c} \biggr) \int_1^{\xi_s} \xi d\xi + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \int_1^{\xi_s} (\xi^3 - 1) \xi d\xi \biggr\} </math>

 

<math> = - \biggl( \frac{GM^2_\mathrm{tot}}{R} \biggr) 3\nu^2 \xi_s \biggl\{ \frac{1}{5} + \frac{1}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^2 - 1) + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \frac{1}{5}(\xi_s^5 - 1) - \frac{1}{2}(\xi_s^2-1) \biggr] \biggr\} </math>

I like the form of this expression. The leading term, which scales as <math>R^{-1}</math>, encapsulates the behavior of the gravitational potential energy for a given choice of the internal structure, namely, a given choice of <math>\xi_s</math>, <math>\nu</math>, and density ratio <math>(\rho_e/\rho_c)</math>. Actually, only two internal structural parameters need to be specified — <math>\nu</math> and <math>\xi_s</math> (or, <math>q</math>). From these two, the expression shown above allows the determination of <math>(\rho_e/\rho_c)</math>.

Drawing on expressions developed in our introductory discussion of the virial equation, the internal energy of the bipolytropic configuration is,

<math> U = U_\mathrm{core} + U_\mathrm{env} </math>

<math>=</math>

<math> \biggl\{ M_\mathrm{core} \biggl[ (1 - \delta_{\infty n_c}) n_c K_c \rho_c^{1/n_c} + \delta_{\infty n_c} c_s^2 \ln\biggl(\frac{\rho_c}{\rho_\mathrm{norm}} \biggr) \biggr] + n_e M_\mathrm{env} K_e \rho_e^{1/n_e} \biggr\} \, , </math>

where we have allowed for either an isothermal (<math>\delta_{\infty n_c} = 1</math>) or an adiabatic (<math>\delta_{\infty n_c} = 0</math>) core and, for normalization purposes, we have introduced,

<math> \rho_\mathrm{norm} \equiv \frac{3M_\mathrm{tot}}{4\pi R_0^3} \, , </math>

where, <math>R_0</math> is an, as yet unspecified, radius. This expression for the total internal energy may be rewritten as,

<math> \frac{U}{M_\mathrm{tot}} </math>

<math>=</math>

<math> \nu \biggl[ (1 - \delta_{\infty n_c}) n_c K_c \rho_c^{1/n_c} + \delta_{\infty n_c} c_s^2 \ln\biggl(\frac{\rho_c}{\rho_\mathrm{norm}} \biggr) \biggr] + (1-\nu) n_e K_e \rho_e^{1/n_e} </math>

 

<math>=</math>

<math> \nu \biggl\{ (1 - \delta_{\infty n_c}) n_c K_c \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi} \biggr) \nu r_i^{-3} \biggr]^{1/n_c} + \delta_{\infty n_c} c_s^2 \ln( \nu R_0^3 r_i^{-3} ) \biggr\} + (1-\nu) n_e K_e \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi} \biggr) (1-\nu)(\xi_s^3-1)^{-1} r_i^{-3} \biggr]^{1/n_e} </math>

 

<math>=</math>

<math> \nu \biggl\{ (1 - \delta_{\infty n_c}) n_c K_c \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr) \nu \xi_s^{3} \biggr]^{1/n_c} \biggl(\frac{R}{R_0}\biggr)^{-3/n_c} + ~\delta_{\infty n_c} c_s^2 \biggl[ \ln( \nu \xi_s^3) - 3 \ln \biggl( \frac{R}{R_0} \biggr) \biggr] \biggr\} </math>

 

 

<math>~~~ + (1-\nu) n_e K_e \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr) (1-\nu)(\xi_s^3-1)^{-1} \xi_s^{3} \biggr]^{1/n_e} \biggl(\frac{R}{R_0}\biggr)^{-3/n_e} \, . </math>

Ultimately, we will relate <math>K_e</math> to <math>K_c</math> by demanding that initially the pressure is identical in both layers. As derived earlier, this will be accomplished via the expression,

<math>\frac{K_e}{K_c}</math>

=

<math>\biggl[ \frac{\rho_c^{1+1/n_c}}{\rho_e^{1+1/n_e}} \biggr]_0 \, .</math>

Virial Analysis

Free Energy Expression

To within an additive constant, the free energy may now be written as,

<math> \mathfrak{G} = W + U = - A \chi^{-1} + (1-\delta_{\infty n_c}) B_c \chi^{-3/n_c} - \delta_{\infty n_c} B_I \ln\chi + B_e \chi^{-3/n_e} \, , </math>

where, <math>\chi \equiv R/R_0</math> and,

<math> A </math>

<math>=</math>

<math> \biggl( \frac{3GM^2_\mathrm{tot}}{5R_0} \biggr) \nu^2 \xi_s \biggl\{ 1 + \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^2 - 1) + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ (\xi_s^5 - 1) - \frac{5}{2}(\xi_s^2-1) \biggr] \biggr\} \, , </math>

<math>B_c</math>

<math>=</math>

<math> n_c K_c M_\mathrm{tot} \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr)^{1/n_c} \nu^{1+1/n_c} \xi_s^{3/n_c} \, , </math>

<math>B_I</math>

<math>=</math>

<math> 3 M_\mathrm{tot} c_s^2 \nu \, , </math>

<math>B_e</math>

<math>=</math>

<math> n_e K_e M_\mathrm{tot} \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr)^{1/n_e} (1 - \nu)^{1+1/n_e} \xi_s^{3/n_e} (\xi_s^3 - 1)^{-1/n_e} \, . </math>


Derivatives of Free Energy

<math> \frac{\partial\mathfrak{G}}{\partial \chi} = A \chi^{-2} -(1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi^{-(1+3/n_c)} - \delta_{\infty n_c} B_I \chi^{-1} -\frac{3}{n_e} B_e \chi^{-(1+3/n_e)} \, ; </math>

<math> \frac{\partial^2\mathfrak{G}}{\partial \chi^2} = -2 A \chi^{-3} + (1-\delta_{\infty n_c}) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi^{-(2+3/n_c)} + \delta_{\infty n_c} B_I \chi^{-2} + \frac{3}{n_e} \biggl(1+\frac{3}{n_e}\biggr) B_e \chi^{-(2+3/n_e)} \, . </math>

Equilibrium Condition

We obtain the equilibrium radius, <math>\chi_E</math>, when <math>\partial\mathfrak{G}/\partial\chi = 0</math>. Hence, the relation governing the equilibrium radius is,

<math> A \chi_E^{-2} </math>

<math>=</math>

<math> (1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi_E^{-1- 3/n_c)} +\delta_{\infty n_c} B_I \chi_E^{-1} +\frac{3}{n_e} B_e \chi_E^{-1-3/n_e)} </math>

<math> \Rightarrow ~~~~~ \frac{n_e A}{3B_e} </math>

<math>=</math>

<math> (1-\delta_{\infty n_c}) \frac{n_e B_c}{n_c B_e} \chi_E^{1- 3/n_c} +\delta_{\infty n_c} \frac{n_e B_I}{3B_e} \chi_E + \chi_E^{1-3/n_e} </math>

<math> \Rightarrow ~~~~~ \chi_E^{1-3/n_e} </math>

<math>=</math>

<math> \alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \, , </math>

where,

<math>\alpha \equiv \frac{n_e A}{3B_e} \, ; ~~~ \beta \equiv \frac{n_e B_c}{n_c B_e} \, ; ~~~ \beta_I \equiv \frac{n_e B_I}{3B_e} \, .</math>

Stability

At this equilibrium radius, the second derivative of the free energy has the value,

<math> \chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E </math>

<math> = </math>

<math> -2 A\biggl( \frac{n_e}{3B_e} \biggr) + (1-\delta_{\infty n_c}) \biggl( \frac{n_e}{3B_e} \biggr) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi_E^{1-3/n_c} + \delta_{\infty n_c} \biggl( \frac{n_e}{3B_e} \biggr) B_I \chi_E + \frac{3}{n_e}\biggl( \frac{n_e}{3B_e} \biggr) \biggl(1+\frac{3}{n_e}\biggr) B_e \chi_E^{1-3/n_e} </math>

 

<math> = </math>

<math> -2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c} + \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \chi_E^{1-3/n_e} \, , </math>

which, when combined with the condition for equilibrium gives,

<math> \chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E </math>

<math> = </math>

<math> -2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c} + \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \biggl[ \alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \biggr] </math>

 

<math> = </math>

<math> \alpha \biggl(\frac{3}{n_e}-1\biggr) + (1-\delta_{\infty n_c}) \beta \biggl(\frac{3}{n_c}-\frac{3}{n_e}\biggr) \chi_E^{1-3/n_c} - \delta_{\infty n_c} \beta_I \biggl(\frac{3}{n_e}\biggr)\chi_E </math>

<math> \Rightarrow ~~~~ \chi_E^3 \biggl( \frac{n_e^2}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E </math>

<math> = </math>

<math> \alpha (3-n_e) - (1-\delta_{\infty n_c}) 3\beta \biggl(1 - \frac{n_e}{n_c} \biggr) \chi_E^{1-3/n_c} - \delta_{\infty n_c} 3\beta_I \chi_E \, . </math>

Finally, the equilibrium configuration is stable as long as this second derivative is positive. Hence, for a bipolytrope with an isothermal core (<math>\delta_{\infty n_c} = 1</math>), the configuration is stable as long as,

<math> \chi_E < \frac{\alpha (3-n_e)}{3\beta_I} \, . </math>

In the adiabatic case (<math>\delta_{\infty n_c} = 0</math>), the configuration is stable as long as,

<math> \chi_E^{1-3/n_c} < \frac{\alpha n_c (3-n_e)}{3\beta (n_c-n_e)} \, . </math>


Examples

Isothermal Core

If the core is isothermal, we set <math>n_c = \infty</math>, in which case stability occurs for,

<math> \chi_E^{3/n_e-1} < \frac{3\beta}{n_e \alpha} \, . </math>

Envelope with <math>n=3/2</math>

If we choose an <math>n_e = 3/2</math> envelope, we obtain stability for,

<math> \chi_E < \frac{2\beta}{\alpha}\, . </math>

In this case, the equilibrium radius condition is,

<math> \chi_E^2 - \alpha \chi_E + \beta =0 </math>

<math> \Rightarrow ~~~~ \chi_E = \frac{1}{2}\biggl[\alpha \pm \biggl( \alpha^2 -4\beta \biggr)^{1/2} \biggr] = \frac{\alpha}{2}\biggl[1 \pm \biggl( 1 -\frac{4\beta}{\alpha^2} \biggr)^{1/2} \biggr] </math>


Envelope with <math>n=1</math>

If, instead, we choose an <math>n_e = 1</math> envelope, we obtain stability for,

<math> \chi_E < \sqrt{\frac{3\beta}{\alpha} }\, . </math>

In this case, the equilibrium radius condition is,

<math> \alpha = \chi_E + \beta \chi_E^{-2} \, , </math>

<math> \Rightarrow ~~~~ \chi_E^3 - \alpha \chi_E^2 + \beta = 0 \, . </math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation