Difference between revisions of "User:Tohline/SSC/Structure/PolytropesEmbedded"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Extension to Bounded Sphere: Finish caption to Figure 1)
(→‎{{User:Tohline/Math/MP_PolytropicIndex}} = 5 Polytrope: Reviewing results from n =5 before exerting bounding pressure)
Line 115: Line 115:


=={{User:Tohline/Math/MP_PolytropicIndex}} = 5 Polytrope==
=={{User:Tohline/Math/MP_PolytropicIndex}} = 5 Polytrope==
To derive the radial distribution of the Lane-Emden function <math>\Theta_H(r)</math> for an {{User:Tohline/Math/MP_PolytropicIndex}} = 5 polytrope, we must solve,
Drawing from the [[User:Tohline/SSC/Structure/Polytropes|earlier discussion of isolated polytropes]], we will reference various radial locations within a spherical {{User:Tohline/Math/MP_PolytropicIndex}} = 5 polytrope by the dimensionless radius,
<div align="center">
<div align="center">
<math>\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - (\Theta_H)^5</math> ,
<math>
\xi \equiv \frac{r}{a_\mathrm{n=5}} ,
</math>
</div>
</div>
subject to the above-specified [[User:Tohline/SSC/Structure/Polytropes#Boundary_Conditions|boundary conditions]].  Following Emden (1907), [http://www.vistrails.org/index.php/User:Tohline/Appendix/References#C67  C67] (pp. 93-94) shows that by making the substitutions,
where,
<div align="center">
<div align="center">
<math>
<math>
\xi = \frac{1}{x} = e^{-t} \, ; ~~~~~\Theta_H = \biggl(\frac{x}{2}\biggr)^{1/2} z = \biggl(\frac{1}{2}e^t\biggr)^{1/2}z \, ,
a_{n=5} =  \biggr[ \frac{(n+1)K}{4\pi G} \rho_c^{(1/n - 1)} \biggr]^{1/2}_{n=5} =
\biggr[ \frac{3K}{2\pi G} \biggr]^{1/2} \rho_c^{-2/5}  \, .
</math>
</math>
</div>
</div>
the differential equation can be rewritten as,
 
<font color="darkblue">
===Review===
</font>
 
Again, from the [[User:Tohline/SSC/Structure/Polytropes|earlier discussion]], we can describe the properties of an isolated, spherical {{User:Tohline/Math/MP_PolytropicIndex}} = 5 polytrope as follows:
* <font color="red">Mass</font>: 
: In terms of the central density, <math>\rho_c</math>, and {{User:Tohline/Math/MP_PolytropicConstant}}, the total mass is,
<div align="center">
<math>M = \biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2}  \rho_c^{-1/5}  </math> ;
</div>
: and, expressed as a function of <math>M</math>, the mass that lies interior to the dimensionless radius <math>\xi</math> is,
<div align="center">
<div align="center">
<math>
<math>
\frac{d^2 z}{dt^2} = \frac{1}{4}z (1 - z^4) \, .
\frac{M_\xi}{M} = \xi^3 (3 + \xi^2)^{-3/2}  \, .
</math>
</math>  
</div>
</div>
This equation has the solution,
: Hence,
<div align="center">
<div align="center">
<math>
<math>
z = \pm \biggl[ \frac{12 C e^{-2t}}{(1 + C e^{-2t})^2} \biggr]^{1/4} \, ,
M_\xi = \biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2} \rho_c^{-1/5} \biggl[ \xi^3 (3 + \xi^2)^{-3/2} \biggr] \, .
</math>
</math>
</div>
 
* <font color="red">Pressure</font>:
: The central pressure of the configuration is,
<div align="center">
<math>P_c = \biggr[ \frac{\pi M^2 G^3}{2\cdot 3^4} \biggr]^{1/3}  \rho_c^{4/3} </math> ;
</div>
</div>
that is,
 
: and, expressed in terms of the central pressure <math>P_c</math>, the variation with radius of the pressure is,
<div align="center">
<div align="center">
<math>
<math>P_\xi= P_c \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-3}</math> .
\Theta_H = \biggl[ \frac{3 C }{(1 + C \xi^2)^2} \biggr]^{1/4} \, .
</math>
</div>
</div>
where <math>C</math> is an integration constant.  Because <math>\Theta_H</math> must go to unity when <math>\xi = 0</math>, we see that <math>C=1/3</math>.  Hence,
: Hence,
<div align="center">
<div align="center">
<math>
<math>P_\xi= \biggr[ \frac{\pi M^2 G^3}{2\cdot 3^4} \biggr]^{1/3}  \rho_c^{4/3}  \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-3}</math> .
\Theta_H = \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-1/2} \, .
</math>
</div>
</div>



Revision as of 01:33, 20 October 2012

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Embedded Polytropic Spheres

LSU Structure still.gif

In a separate discussion we showed how to determine the structure of isolated polytropic spheres. These are rather idealized stellar structures in which the pressure and density both drop to zero at the surface of the star. Here we consider how the equilibrium radius of a polytropic configuration of a given <math>M</math> and <math>~K_\mathrm{n}</math> is modified when it is embedded in an external medium of pressure <math>P_e</math>. We will begin by focusing on polytropes of index <math>~n</math> = 1 and <math>~n</math> = 5 because their structures can be described by analytic mathematical expressions.

<math>~n</math> = 1 Polytrope

Drawing from the earlier discussion of isolated polytropes, we will reference various radial locations within the spherical configuration by the dimensionless radius,

<math> \xi \equiv \frac{r}{a_\mathrm{n=1}} , </math>

where,

<math> a_\mathrm{n=1} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)_{n=1}\biggr]^{1/2} = \biggl[\frac{K}{2\pi G} \biggr]^{1/2} \, . </math>

Review

Again, from the earlier discussion, we can describe the properties of an isolated, spherical <math>~n</math> = 1 polytrope as follows:

  • Mass:
In terms of the central density, <math>\rho_c</math>, and <math>~K_\mathrm{n}</math>, the total mass is,

<math>M = \frac{4}{\pi} \rho_c (\pi a_{n=1})^3 = 4\pi^2 \rho_c \biggl[\frac{K}{2\pi G} \biggr]^{3/2} = \rho_c \biggl[\frac{2\pi K^3}{G^3} \biggr]^{1/2}</math> ;

and, expressed as a function of <math>M</math>, the mass that lies interior to the dimensionless radius <math>\xi</math> is,

<math>\frac{M_\xi}{M} = \frac{1}{\pi} \biggl[ \sin\xi - \xi\cos\xi \biggr] \, ,~~~~~~\mathrm{for}~\pi \ge \xi \ge 0 \, .</math>

Hence,

<math>M_\xi = \rho_c \biggl[\frac{2K^3}{\pi G^3} \biggr]^{1/2} \biggl[ \sin\xi - \xi\cos\xi \biggr] \, .</math>

  • Pressure:
The central pressure of the configuration is,

<math>P_c = \biggl[ \frac{G^3}{2\pi} \rho_c^4 M^2 \biggr]^{1/3} = \biggl[ \frac{G^3}{2\pi} \rho_c^6 \biggl(\frac{2\pi K^3}{G^3} \biggr) \biggr]^{1/3} = K\rho_c^2</math> ;

and, expressed in terms of the central pressure <math>P_c</math>, the variation with radius of the pressure is,

<math>P_\xi= P_c \biggl[ \frac{\sin\xi}{\xi} \biggr]^2</math> .

Hence,

<math>P_\xi= K\rho_c^2 \biggl[ \frac{\sin\xi}{\xi} \biggr]^2</math> .

Extension to Bounded Sphere

Eliminating <math>\rho_c</math> between the last expression for <math>M_\xi</math> and the last expression for <math>P_\xi</math> gives,

<math>P_\xi= \biggl[\frac{\pi}{2} \cdot \frac{G^3 M_\xi^2}{K^2} \biggr] \biggl[ \frac{\sin\xi}{\xi(\sin\xi - \xi \cos\xi )} \biggr]^2</math> .

Now, if we rip off an outer layer of the star down to some dimensionless radius <math>\xi_e < \pi</math>, the interior of the configuration that remains — containing mass <math>M_{\xi_e}</math> — should remain in equilibrium if we impose the appropriate amount of externally applied pressure <math>P_e = P_{\xi_e} </math> at that radius. (This will work only for spherically symmetric configurations, as the gravitation acceleration at any location only depends on the mass contained inside that radius.) If we rescale our solution such that the mass enclosed within <math>\xi_e</math> is the original total mass <math>M</math>, then the pressure that must be imposed by the external medium in which the configuration is embedded is,

<math>P_e= \biggl[\frac{\pi}{2} \cdot \frac{G^3 M^2}{K^2} \biggr] \biggl[ \frac{\sin\xi_e}{\xi_e(\sin\xi_e - \xi_e \cos\xi_e )} \biggr]^2</math> .

The associated equilibrium radius of this pressure-confined configuration is,

<math> R_\mathrm{eq} = \xi_e a_\mathrm{n=1} = \biggl[ \frac{K}{2\pi G} \biggr]^{1/2} \xi_e </math>

The solid black curve in Figure 1 shows how <math>R_\mathrm{eq}</math> varies with the applied external pressure <math>P_e</math>. Following the lead of Whitworth (1981, MNRAS, 195, 967), these two quantities have been respectively normalized (or, "referenced") to,

<math> R_\mathrm{rf}\biggr|_\mathrm{n=1} \equiv \biggl( \frac{3^2 \cdot 5}{2^4 \pi} \biggr)^{1/2} \biggl(\frac{K}{G}\biggr)^{1/2} ~~~\Rightarrow ~~~ \frac{R_\mathrm{eq}}{R_\mathrm{rf}} = \biggl( \frac{2^3}{3^2 \cdot 5} \biggr)^{1/2} \xi_e \, ; </math>

and,

<math> P_\mathrm{rf}\biggr|_\mathrm{n=1} \equiv \frac{2^6 \pi}{3^4 \cdot 5^3} \biggl(\frac{G^3 M^2}{K^2}\biggr) ~~~\Rightarrow ~~~ \frac{P_e}{P_\mathrm{rf}} = \biggl( \frac{3^4 \cdot 5^3}{2^7} \biggr) \biggl[ \frac{\sin\xi_e}{\xi_e(\sin\xi_e - \xi_e \cos\xi_e )} \biggr]^2 \, . </math>


Figure 1: Equilibrium R-P Diagram

Top: The solid curve shows how the equilibrium radius <math>(R_\mathrm{eq})</math> of an n = 1 <math>(\gamma_g = 2)</math> polytrope varies with applied external pressure, <math>P_e</math>. Logarithmic units are used along both axes; <math>P_e</math> is normalized to <math>P_\mathrm{rf}</math> and <math>R_\mathrm{eq}</math> is normalized to <math>R_\mathrm{rf}</math>, as defined in the text.


Bottom: A reproduction of Figure 1b from Whitworth (1981, MNRAS, 195, 967). The various curves identify the equilibrium radii, <math>R_\mathrm{eq}</math>, that result from embedding polytropic structures with various effective adiabatic indexes <math>(\gamma_g = 1/3,~ 2/3,~ 1,~ 4/3,~ 5/3)</math> in an external medium of pressure <math>P_\mathrm{ex}</math>.


Comparison: The <math>P-R</math> behavior of the analytically derived solution for n = 1 <math>(\gamma_g = 2)</math>, shown above, is consistent with the behavior of the numerically derived solutions presented by Whitworth for slightly lower values of <math>\gamma_g</math> = 5/3 and 4/3.

To be compared with Whitworth (1981)
Whitworth (1981) Figure 1b

<math>~n</math> = 5 Polytrope

Drawing from the earlier discussion of isolated polytropes, we will reference various radial locations within a spherical <math>~n</math> = 5 polytrope by the dimensionless radius,

<math> \xi \equiv \frac{r}{a_\mathrm{n=5}} , </math>

where,

<math> a_{n=5} = \biggr[ \frac{(n+1)K}{4\pi G} \rho_c^{(1/n - 1)} \biggr]^{1/2}_{n=5} = \biggr[ \frac{3K}{2\pi G} \biggr]^{1/2} \rho_c^{-2/5} \, . </math>

Review

Again, from the earlier discussion, we can describe the properties of an isolated, spherical <math>~n</math> = 5 polytrope as follows:

  • Mass:
In terms of the central density, <math>\rho_c</math>, and <math>~K_\mathrm{n}</math>, the total mass is,

<math>M = \biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2} \rho_c^{-1/5} </math> ;

and, expressed as a function of <math>M</math>, the mass that lies interior to the dimensionless radius <math>\xi</math> is,

<math> \frac{M_\xi}{M} = \xi^3 (3 + \xi^2)^{-3/2} \, . </math>

Hence,

<math> M_\xi = \biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2} \rho_c^{-1/5} \biggl[ \xi^3 (3 + \xi^2)^{-3/2} \biggr] \, . </math>

  • Pressure:
The central pressure of the configuration is,

<math>P_c = \biggr[ \frac{\pi M^2 G^3}{2\cdot 3^4} \biggr]^{1/3} \rho_c^{4/3} </math> ;

and, expressed in terms of the central pressure <math>P_c</math>, the variation with radius of the pressure is,

<math>P_\xi= P_c \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-3}</math> .

Hence,

<math>P_\xi= \biggr[ \frac{\pi M^2 G^3}{2\cdot 3^4} \biggr]^{1/3} \rho_c^{4/3} \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-3}</math> .

Related Wikipedia Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation