Difference between revisions of "User:Tohline/VE"
(Begin Virial Equation chapter) |
(→Uniform-density, Polytropic Sphere: Add more material) |
||
Line 13: | Line 13: | ||
Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>. | Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>. | ||
==Uniform-density, | ==Uniform-density, Uniformly Rotating Sphere== | ||
For a uniform-density, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>, | For a uniform-density, uniformly rotating, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>, | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5"> | <table border="0" cellpadding="5"> | ||
Line 28: | Line 28: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
- \frac{3}{5} \frac{GM^2}{R} \, | - \frac{3}{5} \frac{GM^2}{R} \, , | ||
</math> | </math> | ||
</td> | </td> | ||
Line 36: | Line 36: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
T_\mathrm{rot} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 44: | Line 44: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{2}{ | \frac{1}{2} I \omega^2 = \frac{J^2}{2I} = \frac{5}{4} \frac{J^2}{MR^2} \, , | ||
</math> | </math> | ||
</td> | </td> | ||
Line 52: | Line 52: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
V | |||
</math> | </math> | ||
</td> | </td> | ||
Line 60: | Line 60: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{ | \frac{4}{3} \pi R^3 \, , | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
where, {{User:Tohline/Math/C_GravitationalConstant}} is the gravitational constant <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum. | |||
===Adiabatic=== | |||
If, upon compression or expansion, the gas behaves adiabatically, that is, the pressure varies with density as, | |||
<div align="center"> | |||
<math>P = K \rho^{\gamma_g} \, ,</math> | |||
</div> | |||
where, <math>K</math> specifies the specific entropy of the gas and {{User:Tohline/Math/MP_AdiabaticIndex}} is the ratio of specific heats, then | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
U = \frac{2}{3(\gamma_g - 1)} S | |||
</math> | </math> | ||
</td> | </td> | ||
Line 76: | Line 89: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{ | \frac{2}{3(\gamma_g - 1)} \biggl[ \frac{1}{2} a_s^2 M \biggr] \, , | ||
</math> | </math> | ||
</td> | </td> | ||
Line 83: | Line 96: | ||
</table> | </table> | ||
</div> | </div> | ||
where <math>S</math> is the total thermal energy, and the square of the (adiabatic) sound speed, | |||
<div align="center"> | |||
<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math> | |||
</div> | |||
===Isothermal=== | |||
If, upon compression or expansion, the gas remains isothermal — in which case <math>\gamma_g =1</math> — then, both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant. But as pointed out, for example, by [http://adsabs.harvard.edu/abs/1983ApJ...268..165S Stahler] (1983, ApJ, 268, 16), the total internal energy does vary according to the relation, | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
U | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{2}{3} S \ln\rho \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 02:44, 10 September 2012
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Virial Equation
Free Energy Expression
Associated with any self-gravitating, gaseous configuration we can identify a total "Gibbs-like" free energy, <math>\mathfrak{G}</math>, given by the sum of the relevant contributions to the total energy,
<math> \mathfrak{G} = W + U + T_\mathrm{rot} + P_e V + ... </math>
Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>.
Uniform-density, Uniformly Rotating Sphere
For a uniform-density, uniformly rotating, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>,
<math> W </math> |
<math>=</math> |
<math> - \frac{3}{5} \frac{GM^2}{R} \, , </math> |
<math> T_\mathrm{rot} </math> |
<math>=</math> |
<math> \frac{1}{2} I \omega^2 = \frac{J^2}{2I} = \frac{5}{4} \frac{J^2}{MR^2} \, , </math> |
<math> V </math> |
<math>=</math> |
<math> \frac{4}{3} \pi R^3 \, , </math> |
where, <math>~G</math> is the gravitational constant <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum.
Adiabatic
If, upon compression or expansion, the gas behaves adiabatically, that is, the pressure varies with density as,
<math>P = K \rho^{\gamma_g} \, ,</math>
where, <math>K</math> specifies the specific entropy of the gas and <math>~\gamma_\mathrm{g}</math> is the ratio of specific heats, then
<math> U = \frac{2}{3(\gamma_g - 1)} S </math> |
<math>=</math> |
<math> \frac{2}{3(\gamma_g - 1)} \biggl[ \frac{1}{2} a_s^2 M \biggr] \, , </math> |
where <math>S</math> is the total thermal energy, and the square of the (adiabatic) sound speed,
<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math>
Isothermal
If, upon compression or expansion, the gas remains isothermal — in which case <math>\gamma_g =1</math> — then, both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant. But as pointed out, for example, by Stahler (1983, ApJ, 268, 16), the total internal energy does vary according to the relation,
<math> U </math> |
<math>=</math> |
<math> \frac{2}{3} S \ln\rho \, . </math> |
© 2014 - 2021 by Joel E. Tohline |