Difference between revisions of "CS6093/Selected Papers and Topics"

From VistrailsWiki
Jump to navigation Jump to search
Line 23: Line 23:
* Answering pattern match queries in large graph databases via graph embedding
* Answering pattern match queries in large graph databases via graph embedding
Lei Zou, Lei Chen, M. Tamer Özsu and Dongyan Zhao
Lei Zou, Lei Chen, M. Tamer Özsu and Dongyan Zhao
[graph-matching-vldbj2011]
http://vgc.poly.edu/~juliana/courses/cs6093/Readings/graph-matching-vldbj2011


* Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, Reynold Cheng: On Querying Historical Evolving Graph Sequences. PVLDB 4(11): 726-737 (2011)
* Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, Reynold Cheng: On Querying Historical Evolving Graph Sequences. PVLDB 4(11): 726-737 (2011)
evolving-graphs-vldb11.pdf
http://vgc.poly.edu/~juliana/courses/cs6093/Readings/evolving-graphs-vldb11.pdf


==  Provenance Applications: Reproducible Publications ==
==  Provenance Applications: Reproducible Publications ==
Line 39: Line 39:


* Automatic optimization for MapReduce programs. Eaman Jahani, Michael J. Cafarella, Christopher Ré. .PVLDB, 2011.
* Automatic optimization for MapReduce programs. Eaman Jahani, Michael J. Cafarella, Christopher Ré. .PVLDB, 2011.
jahani-vldb2011.pdf
http://vgc.poly.edu/~juliana/courses/cs6093/Readings/jahani-vldb2011.pdf


* Parallel data processing with MapReduce: a survey. Lee et al, SIGMOD Record 2011
* Parallel data processing with MapReduce: a survey. Lee et al, SIGMOD Record 2011
http://vgc.poly.edu/~juliana/courses/cs6093/Readings/lee-sigrec2011.pdf


* Scalable SQL and NoSQL Data Stores Rick Cattel, SIGMOD Record 2011. (overview of current data stores)
* Scalable SQL and NoSQL Data Stores Rick Cattel, SIGMOD Record 2011. (overview of current data stores)
cattel-sigrec2011.pdf
http://vgc.poly.edu/~juliana/courses/cs6093/Readings/cattel-sigrec2011.pdf


* [http://infolab.stanford.edu/~usriv/papers/pig-latin.pdf Pig latin: a not-so-foreign language for data processing].C Olston, B Reed, U Srivastava, R Kuma, A. Tomkins. SIGMOD 2008.
* [http://infolab.stanford.edu/~usriv/papers/pig-latin.pdf Pig latin: a not-so-foreign language for data processing].C Olston, B Reed, U Srivastava, R Kuma, A. Tomkins. SIGMOD 2008.

Revision as of 21:07, 7 February 2012

Provenance and Databases

  • Peter Buneman, Sanjeev Khanna, Wang Chiew Tan: Why and Where: A Characterization of Data Provenance. ICDT 2001: 316-330

http://db.cis.upenn.edu/DL/whywhere.pdf

  • A. Das Sarma, M. Theobald, and J. Widom. LIVE: A Lineage-Supported Versioned DBMS. Proceedings of the 22nd International Conference on Scientific and Statistical Database Management, Heidelberg, Germany, June 2010.

http://ilpubs.stanford.edu:8090/926/1/versioning-TR.pdf

  • Total Recall | Oracle Database

http://www.oracle.com/technetwork/database/focus-areas/storage/total-recall-whitepaper-171749.pdf

Additional Suggested Reading:

Graph Indexing

  • Answering pattern match queries in large graph databases via graph embedding

Lei Zou, Lei Chen, M. Tamer Özsu and Dongyan Zhao http://vgc.poly.edu/~juliana/courses/cs6093/Readings/graph-matching-vldbj2011

  • Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, Reynold Cheng: On Querying Historical Evolving Graph Sequences. PVLDB 4(11): 726-737 (2011)

http://vgc.poly.edu/~juliana/courses/cs6093/Readings/evolving-graphs-vldb11.pdf

Provenance Applications: Reproducible Publications

- papers from challenge

Web Schema Matching and Integration

NoSQL Databases

  • Intro to Hadoop (TBD)
  • Automatic optimization for MapReduce programs. Eaman Jahani, Michael J. Cafarella, Christopher Ré. .PVLDB, 2011.

http://vgc.poly.edu/~juliana/courses/cs6093/Readings/jahani-vldb2011.pdf

  • Parallel data processing with MapReduce: a survey. Lee et al, SIGMOD Record 2011

http://vgc.poly.edu/~juliana/courses/cs6093/Readings/lee-sigrec2011.pdf

  • Scalable SQL and NoSQL Data Stores Rick Cattel, SIGMOD Record 2011. (overview of current data stores)

http://vgc.poly.edu/~juliana/courses/cs6093/Readings/cattel-sigrec2011.pdf

Additional suggested reading:

Relational Data on the Web

Deep Web

Using and Analyzing Social Networking Data