Difference between revisions of "User:Tohline/Appendix/Ramblings/Radiation/SummaryScalings"
(→Summary of Scalings: Itemize conclusions) |
(→Summary of Scalings: Add additional table of relationships) |
||
Line 4: | Line 4: | ||
On [[User:Tohline/Appendix/Ramblings/Radiation/CodeUnits|an accompanying Wiki page]] we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following table summarizes some of the mathematical relationships that have been derived in that accompanying discussion. | On [[User:Tohline/Appendix/Ramblings/Radiation/CodeUnits|an accompanying Wiki page]] we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following table summarizes some of the mathematical relationships that have been derived in that accompanying discussion. | ||
<table border="4" align="center" cellpadding="8" width="95%"> | |||
<tr> | |||
<td colspan="3" align="center" width="80%"> | |||
<b>General Relation</b> | |||
</td> | |||
<td colspan="1" align="center"> | |||
<b>Case A</b>: | |||
</td> | |||
</tr> | |||
<tr><td colspan="4" align="center"><table border="0" cellpadding="3" cellspacing="10"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{m_\mathrm{cgs}}{m_\mathrm{code}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
0.4038~\mu_e^2 M_\mathrm{Ch} \biggl( \frac{\tilde{g}^3 \tilde{a}}{\tilde{r}^4 \bar{\mu}^4 } \biggr)^{1/2} | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~2.810\times 10^{33}~\mathrm{g} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{\ell_\mathrm{cgs}}{\ell_\mathrm{code}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
4.438\times 10^{-4}~ \mu_e \ell_\mathrm{Ch}~\biggl( \frac{\tilde{c}^4 \tilde{g} \tilde{a}} {\bar{\mu}^4 \tilde{r}^4} \biggr)^{1/2} | |||
</math> | |||
</td> | |||
<td align="left" width="30%"> | |||
<math>=~~ 8.179\times 10^{9}~\mathrm{cm}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{t_\mathrm{cgs}}{t_\mathrm{code}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
2.9261\times 10^{-6}~\mu_e^{1/2} t_\mathrm{Ch} ~\biggl( \frac{\tilde{c}^6 \tilde{g} \tilde{a}} {\bar{\mu}^4 \tilde{r}^4} \biggr)^{1/2} | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~54.1~\mathrm{s}</math> | |||
</td> | |||
</tr> | |||
</table></td></tr> | |||
<tr> | |||
<td colspan="1" align="right" width="10%"> | |||
where: | |||
</td> | |||
<td colspan="3" align="left"> | |||
<math> | |||
\mu_e^2 M_\mathrm{Ch} = 1.14169\times 10^{34}~\mathrm{g} | |||
</math>; | |||
<math> | |||
\mu_e \ell_\mathrm{Ch} = 7.71311\times 10^{8}~\mathrm{cm} | |||
</math>; | |||
<math> | |||
\mu_e^{1/2} t_\mathrm{Ch} = 3.90812~\mathrm{s} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="4" align="center"> | |||
<b>Case A</b> | |||
<math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
=====================STOP=================== | |||
<table border="4" align="center" cellpadding="8"> | <table border="4" align="center" cellpadding="8"> |
Revision as of 16:01, 3 August 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Summary of Scalings
On an accompanying Wiki page we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following table summarizes some of the mathematical relationships that have been derived in that accompanying discussion.
General Relation |
Case A: |
||||||||||||||
| |||||||||||||||
where: |
<math> \mu_e^2 M_\mathrm{Ch} = 1.14169\times 10^{34}~\mathrm{g} </math>; <math> \mu_e \ell_\mathrm{Ch} = 7.71311\times 10^{8}~\mathrm{cm} </math>; <math> \mu_e^{1/2} t_\mathrm{Ch} = 3.90812~\mathrm{s} </math> |
||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
===============STOP=============
General Relation |
Case A: |
||||||||||||||||||
| |||||||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
Combining the above Case A relations with the RadHydro-code properties of the Q0.7 polytropic binary that serves as an initial condition for Dominic's simulations, we conclude the following:
(1) The system will experience "super-Eddington" accretion (i.e., <math>f_\mathrm{Edd} > 1</math>) when
<math> [\dot{M}]_\mathrm{code} > 1.3\times 10^{-10} . </math>
(2) The mean-free-path, <math>\ell_\mathrm{mfp}</math>, of a photon will be less than one grid cell <math>(\Delta R)_\mathrm{code}</math> when
<math> [\rho]_\mathrm{code} > \rho_\mathrm{threshold} = 5\times 10^{-12} . </math>
(3) The system is weakly relativistic because,
<math> \frac{v_\mathrm{circ}}{c} = 0.0026 . </math>
© 2014 - 2021 by Joel E. Tohline |