Difference between revisions of "User:Jaycall/T3 Coordinates/Special Case"

From VistrailsWiki
Jump to navigation Jump to search
m (Corrected coordinate transformation)
m (Added headings)
Line 1: Line 1:
==Coordinate Transformations==
If the special case <math>q^2=2</math> is considered, it is possible to invert the coordinate transformations in closed form.  The coordinate transformations and their inversions become
If the special case <math>q^2=2</math> is considered, it is possible to invert the coordinate transformations in closed form.  The coordinate transformations and their inversions become


Line 57: Line 59:
</tr>
</tr>
</table>
</table>
==Partials of the Coordinates==


Partial derivatives of each of the T3 coordinates taken with respect to each of the cylindrical coordinates are:
Partial derivatives of each of the T3 coordinates taken with respect to each of the cylindrical coordinates are:
Line 229: Line 233:


where <math>\ell \equiv \left( R^2 + 4z^2 \right)^{-1/2}</math>.
where <math>\ell \equiv \left( R^2 + 4z^2 \right)^{-1/2}</math>.
==Scale Factors==


Furthermore, the scale factors become
Furthermore, the scale factors become
Line 269: Line 275:
   </tr>
   </tr>
</table>
</table>
==Useful Relationships==


In this special case, there are some additional useful relationships between various combinations of cylindrical variables and their T3 equivalents which can be written out.
In this special case, there are some additional useful relationships between various combinations of cylindrical variables and their T3 equivalents which can be written out.
Line 333: Line 341:
   </tr>
   </tr>
</table>
</table>
==Additional Partials==


Partials of <math>\ell</math> can be taken with respect to the coordinates of either system.  They are:
Partials of <math>\ell</math> can be taken with respect to the coordinates of either system.  They are:
Line 509: Line 519:
</tr>
</tr>
</table>
</table>
==Conserved Quantity==


The conserved quantity associated with the <math>\lambda_2</math> coordinate is
The conserved quantity associated with the <math>\lambda_2</math> coordinate is

Revision as of 16:49, 17 July 2010

Coordinate Transformations

If the special case <math>q^2=2</math> is considered, it is possible to invert the coordinate transformations in closed form. The coordinate transformations and their inversions become

<math> \lambda_1 </math>

<math>\equiv</math>

<math>\left( R^2+2z^2 \right)^{1/2}</math>

      and      

<math> \lambda_2 </math>

<math>\equiv</math>

<math>\frac{R^2}{\sqrt{2}z}</math>

<math> R^2 </math>

<math>\equiv</math>

<math>-\frac{{\lambda_2}^2}{2} + \lambda_2 \sqrt{{\lambda_1}^2 + {\lambda_2}^2/4}</math>

      and      

<math> z </math>

<math>\equiv</math>

<math>\frac{1}{2^{3/2}} \left[ -\lambda_2 + \sqrt{4 {\lambda_1}^2+{\lambda_2}^2} \right] </math>

Partials of the Coordinates

Partial derivatives of each of the T3 coordinates taken with respect to each of the cylindrical coordinates are:

 

<math> \frac{\partial}{\partial R} </math>

<math> \frac{\partial}{\partial z} </math>

<math> \frac{\partial}{\partial \phi} </math>

<math>\lambda_1</math>

<math> \frac{R}{\lambda_1} </math>

<math> \frac{2z}{\lambda_1} </math>

<math> 0 </math>

<math>\lambda_2</math>

<math> \frac{2 \lambda_2}{R} </math>

<math> -\frac{\lambda_2}{z} </math>

<math>0</math>

<math>\lambda_3</math>

<math> 0 </math>

<math> 0</math>

<math> 1 </math>

And partials of the cylindrical coordinates taken with respect to the T3 coordinates are:

 

<math> \frac{\partial}{\partial \lambda_1} </math>

<math> \frac{\partial}{\partial \lambda_2} </math>

<math> \frac{\partial}{\partial \lambda_3} </math>

<math>R</math>

<math> R \ell^2 \lambda_1 </math>

<math> 2Rz^2 \ell^2 / \lambda_2 </math>

<math> 0 </math>

<math>z</math>

<math> 2z \ell^2 \lambda_1 </math>

<math> -R^2 z \ell^2 / \lambda_2 </math>

<math>0</math>

<math>\phi</math>

<math> 0 </math>

<math> 0</math>

<math> 1 </math>

where <math>\ell \equiv \left( R^2 + 4z^2 \right)^{-1/2}</math>.

Scale Factors

Furthermore, the scale factors become

<math>h_1</math>

<math>=</math>

<math>\lambda_1 \ell</math>

<math>h_2</math>

<math>=</math>

<math>Rz \ell / \lambda_2</math>

<math>h_3</math>

<math>=</math>

<math>R = \lambda_3</math>

Useful Relationships

In this special case, there are some additional useful relationships between various combinations of cylindrical variables and their T3 equivalents which can be written out.

<math>R^2 + 2z^2</math>

<math>=</math>

<math>{\lambda_1}^2</math>

<math>R^2 + 4z^2</math>

<math>=</math>

<math>2 {\lambda_1}^2 + {\lambda_2}^2/2 - \lambda_2 \sqrt{{\lambda_1}^2+{\lambda_2}^2/4} = \ell^{-2}</math>

<math>R^2 + 8z^2</math>

<math>=</math>

<math>4 {\lambda_1}^2 + \tfrac{3}{2} {\lambda_2}^2 - 3 \lambda_2 \sqrt{{\lambda_1}^2+{\lambda_2}^2/4} = 3 \ell^{-2} - 2 {\lambda_1}^2</math>

<math>R^2 - 2z^2</math>

<math>=</math>

<math>- {\lambda_1}^2 - {\lambda_2}^2 + 2 \lambda_2 \sqrt{{\lambda_1}^2+{\lambda_2}^2/4} = 3 {\lambda_1}^2 -2 \ell^{-2}</math>

<math>Rz</math>

<math>=</math>

<math>\sqrt{\sqrt{2}\lambda_2} \left( -\frac{\lambda_2}{2\sqrt{2}} + \sqrt{\frac{4{\lambda_1}^2+{\lambda_2}^2}{8}} \right)^{3/2} = h_2 \lambda_2 / \ell</math>

Additional Partials

Partials of <math>\ell</math> can be taken with respect to the coordinates of either system. They are:

 

<math> \frac{\partial}{\partial R} </math>

<math> \frac{\partial}{\partial z} </math>

<math> \frac{\partial}{\partial \phi} </math>

<math>\ell</math>

<math> -R \ell^3 </math>

<math> -4z \ell^3 </math>

<math> 0 </math>

 

<math> \frac{\partial}{\partial \lambda_1} </math>

<math> \frac{\partial}{\partial \lambda_2} </math>

<math> \frac{\partial}{\partial \lambda_3} </math>

<math>\ell</math>

<math> - \left( R^2 + 8z^2 \right) \ell^5 \lambda_1 = \ell^3 \lambda_1 \left( 2{h_1}^2 - 3 \right) </math>

<math> 2R^2 z^2 \ell^5 / \lambda_2 = 2 {h_2}^2 \ell^3 \lambda_2 </math>

<math> 0 </math>

Partials of the scale factors taken with respect to the T3 coordinates are:

 

<math> \frac{\partial}{\partial \lambda_1} </math>

<math> \frac{\partial}{\partial \lambda_2} </math>

<math> \frac{\partial}{\partial \lambda_3} </math>

<math>h_1</math>

<math> \ell \left( 2 {h_1}^4 - 3 {h_1}^2 + 1 \right) = 2 h_2 \lambda_2 </math>

<math> 2 {h_2}^2 \ell^3 \lambda_1 \lambda_2 </math>

<math> 0 </math>

<math>h_2</math>

<math> 2 {h_1}^2 h_2 \ell^2 \lambda_1 = 2 h_2 \ell^4 {\lambda_1}^3 </math>

<math> h_2 \left( 2 {h_2}^2 \ell^2 {\lambda_2}^2 - 3 \ell^2 {\lambda_1}^2 + 1 \right) / \lambda_2 </math>

<math>0</math>

<math>h_3</math>

<math> R \ell^2 \lambda_1 </math>

<math> 2Rz^2 \ell^2 / \lambda_2 </math>

<math> 0 </math>

Conserved Quantity

The conserved quantity associated with the <math>\lambda_2</math> coordinate is

<math> m{h_2}^2 \dot{\lambda_2} \exp \int \left[ \left( 4 {\lambda_1}^2 + {\lambda_2}^2 - \lambda_2 \sqrt{4{\lambda_1}^2 + {\lambda_2}^2} \right) \left( \frac{{\lambda_1}^2 \dot{\lambda_2}}{\lambda_2} - \frac{\lambda_2 {\dot{\lambda_1}}^2}{\dot{\lambda_2}} \right) \right] dt </math>