Difference between revisions of "User:Tohline/Appendix/Ramblings/T3Integrals/QuadraticCase"
(→Special Case (Quadratic): Type out coordinate and scale factor definitions) |
(→T3 Coordinates (continued): Invert coordinate relations) |
||
Line 2: | Line 2: | ||
=T3 Coordinates (continued)= | =T3 Coordinates (continued)= | ||
On one accompanying wiki page we have [[User:Tohline/Appendix/Ramblings/T3Integrals#Integras_of_Motion_in_T3_Coordinates|introduced T3 Coordinates]] and on another we have described how [[User:Tohline/Appendix/Ramblings/T3CharacteristicVector#Characteristic_Vector_for_T3_Coordinates|Jay Call's Characteristic Vector]] applies to T3 Coordinates. Here we investigate the properties of our T3 Coordinate system in the special case when <math>q^2 = 2</math>; Jay Call's independent analysis is recorded on a [[User:Jaycall/T3_Coordinates/Special_Case|separate page]]. | |||
==Special Case (Quadratic)== | ==Special Case (Quadratic)== | ||
When <math>q^2=2</math>, the two key coordinates are: | When <math>q^2=2</math>, the two key coordinates are: | ||
Line 50: | Line 50: | ||
<td align="right" colspan="1"> | <td align="right" colspan="1"> | ||
<math> | <math> | ||
2\frac{\lambda_1}{\lambda_2} | \Chi \equiv 2\frac{\lambda_1}{\lambda_2} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 60: | Line 60: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
2 \sinh\Zeta \cosh\Zeta = \sinh(2\Zeta) | 2 \sinh\Zeta \cosh\Zeta = \sinh(2\Zeta) , | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
where, in this case, | |||
<div align="center"> | |||
<math> | |||
\Zeta \equiv \sinh^{-1} \biggl( \frac{\sqrt{2}z}{\varpi} \biggr) . | |||
</math> | |||
</div> | |||
For this special case, we can invert these coordinate relations to obtain analytic expressions for both <math>\varpi</math> and <math>z</math> in terms of <math>\lambda_1</math> and <math>\lambda_2</math>. Specifically, the relation, | |||
<div align="center"> | |||
<math> | |||
1 = \cosh^2\Zeta - \sinh^2\Zeta = \biggl(\frac{\lambda_1}{\varpi}\biggr)^2 - \biggl(\frac{\varpi}{\lambda_2}\biggr)^2 | |||
</math> | |||
</div> | |||
implies that the function <math>\varpi(\lambda_1,\lambda_2)</math> can be obtained from the physically relevant root of the following equation: | |||
<div align="center"> | |||
<math> | |||
\varpi^4 \lambda_2^{-2} + \varpi^2 - \lambda_1^2 = 0. | |||
</math> | |||
</div> | |||
The relevant root gives, | |||
<div align="center"> | |||
<math> | |||
\varpi^2 = \frac{\lambda_2^{2}}{2} \biggl[ \sqrt{1 + (2\lambda_1/\lambda_2)^2} - 1 \biggr]. | |||
</math> | |||
</div> | |||
The desired function <math>z(\lambda_1,\lambda_2)</math> is therefore, | |||
<div align="center"> | |||
<math> | |||
z = \frac{\varpi}{\sqrt{2}} \sinh\Zeta = \frac{\varpi^2}{\sqrt{2}~\lambda_2} = \frac{\lambda_2 }{2\sqrt{2}} \biggl[ \sqrt{1 + (2\lambda_1/\lambda_2)^2} - 1 \biggr]. | |||
</math> | |||
</div> | |||
<br /> | <br /> | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 22:51, 9 June 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
T3 Coordinates (continued)
On one accompanying wiki page we have introduced T3 Coordinates and on another we have described how Jay Call's Characteristic Vector applies to T3 Coordinates. Here we investigate the properties of our T3 Coordinate system in the special case when <math>q^2 = 2</math>; Jay Call's independent analysis is recorded on a separate page.
Special Case (Quadratic)
When <math>q^2=2</math>, the two key coordinates are:
<math> \lambda_1 </math> |
<math> = </math> |
<math> \varpi \cosh\Zeta </math> |
|
<math> \lambda_2 </math> |
<math> = </math> |
<math> \frac{\varpi}{\sinh\Zeta} </math> |
|
Note also: |
<math> \Chi \equiv 2\frac{\lambda_1}{\lambda_2} </math> |
<math> = </math> |
<math> 2 \sinh\Zeta \cosh\Zeta = \sinh(2\Zeta) , </math> |
where, in this case,
<math> \Zeta \equiv \sinh^{-1} \biggl( \frac{\sqrt{2}z}{\varpi} \biggr) . </math>
For this special case, we can invert these coordinate relations to obtain analytic expressions for both <math>\varpi</math> and <math>z</math> in terms of <math>\lambda_1</math> and <math>\lambda_2</math>. Specifically, the relation,
<math> 1 = \cosh^2\Zeta - \sinh^2\Zeta = \biggl(\frac{\lambda_1}{\varpi}\biggr)^2 - \biggl(\frac{\varpi}{\lambda_2}\biggr)^2 </math>
implies that the function <math>\varpi(\lambda_1,\lambda_2)</math> can be obtained from the physically relevant root of the following equation:
<math> \varpi^4 \lambda_2^{-2} + \varpi^2 - \lambda_1^2 = 0. </math>
The relevant root gives,
<math> \varpi^2 = \frac{\lambda_2^{2}}{2} \biggl[ \sqrt{1 + (2\lambda_1/\lambda_2)^2} - 1 \biggr]. </math>
The desired function <math>z(\lambda_1,\lambda_2)</math> is therefore,
<math> z = \frac{\varpi}{\sqrt{2}} \sinh\Zeta = \frac{\varpi^2}{\sqrt{2}~\lambda_2} = \frac{\lambda_2 }{2\sqrt{2}} \biggl[ \sqrt{1 + (2\lambda_1/\lambda_2)^2} - 1 \biggr]. </math>
© 2014 - 2021 by Joel E. Tohline |